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Preface

By the year 2002, it is estimated that more information appliances will be sold
to consumers than PCs (Business Week, March 1999). This new market includes
small, mobile, and ergonomic devices that provide information, entertainment,
and communications capabilities to consumer electronics, industrial automa-
tion, retail automation, and medical markets. These devices require complex
electronic design and system integration, delivered in the short time frames of
consumer electronics. The system design challenge of the next decades is the
dramatic expansion of this spectrum of diversity. Small, low-power, embedded
devices will accelerate as microelectronic mechanical system (MEMS) tech-
nology becomes available. Microscopic devices, powered by ambient energy in
their environment, will be able to sense numerous fields, position, velocity, and
acceleration, and communicate with substantial bandwidth in the near area.
Larger, more powerful systems within the infrastructure will be driven by the
continued improvements in storage density, memory density, processing capa-
bility, and system-area interconnects as single board systems are eclipsed by
complete systems on a chip.

The overall goal of electronic embedded system design is to balance pro-
duction costs with development time and cost in view of performance and
functionality considerations. Production cost depends mainly on the hardware
components of the product. Therefore, to minimize production cost, we must
do one of the following:

Tailor the hardware architecture to the functionality of the product so that
the minimum cost solution is chosen for that particular application, or
Determine a common denominator that could be shared across multiple
applications to increase production volume.

The choice of one policy over the other depends on the cost of the compo-
nents and on the agreements on costs versus volume in place with the manu-
facturers of the hardware components (IC manufacturers in primis). It is also
rather obvious that the common denominator choice tends to minimize
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development costs as well. The overall trend in industry is in fact to try to use
a common hardware “platform” for a fairly large set of functionalities.

As the complexity of the products under design increases, the development
efforts increase exponentially. To keep these efforts in check, a design method-
ology that favors reuse and early error detection is essential.

Both reuse and early error detection imply that the design activity must be
defined rigorously, so that all phases are clearly identified and appropriate
checks are enforced. To be effective, a design methodology that addresses com-
plex systems has to start at high levels of abstraction. In most of the embedded
system design companies, designers are familiar with working at levels of
abstraction that are too close to implementation so that sharing design com-
ponents and verifying designs before prototypes are built is nearly impossible.

Design reuse is most effective in reducing cost and development time when
the components to be shared are close to the final implementation. On the
other hand, it is not always possible or desirable to share designs at this level,
since minimal variations in specification can result in different, albeit similar,
implementations. However, moving higher in abstraction can eliminate the dif-
ferences among designs, so that the higher level of abstraction can be shared
and only a minimal amount of work needs to be carried out to achieve final
implementation.

The ultimate goal is to create a library of functions and of hardware and
software implementations that can be used for all new designs. It is important
to have a multilevel library, since it is often the case that the lower levels that are
closer to the physical implementation change because of the advances in tech-
nology, while the higher levels tend to be stable across product versions.

We believe that it is most likely that the preferred approaches to the imple-
mentation of complex embedded systems will include the following aspects:

Design costs and time are likely to dominate the decision-making process
for system designers. Therefore, design reuse in all its shapes and forms will
be of paramount importance. Flexibility is essential to be able to map an
ever-growing functionality onto an ever-evolving hardware.
Designs have to be captured at the highest level of abstraction to be able to
exploit all the degrees of freedom that are available. Such a level of
abstraction should not make any distinction between hardware and
software, since such a distinction is the consequence of a design decision.
Next-generation systems will use a few highly complex (Moore’s Law
Limited) part-types, but many more energy-power-cost-efficient,
medium-complexity ((10M-100M) gates in 50nm technology) chips,
working concurrently to implement solutions to complex sensing,
computing, and signaling/actuating problems.
Such chips will most likely be developed as an instance of a particular
platform. That is, rather than being assembled from a collection of
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independently developed blocks of silicon functionality, they will be
derived from a specific “family” of micro-architectures, possibly oriented
toward a particular class of problems, that can be modified (extended or
reduced) by the system developer. These platforms will be extended mostly
through the use of large blocks of functionality (for example, in the form
of co-processors), but they will also likely support extensibility in the
memory/communication architecture as well.
These platforms will be highly programmable.
Both system and software reuse impose a design methodology that has to
leverage existing implementations available at all levels of abstraction. This
implies that pre-existing components should be assembled with little or no
effort.

This book deals with the basic principles of a design methodology that
addresses the concerns expressed above. The platform concept is carried
throughout the book as a unifying theme to reuse. This is the first book that
deals with the platform-based approach to the design of embedded systems and
is a stepping stone for anyone who is interested in the real issues facing the
design of complex systems-on-chip.

Alberto Sangiovanni-Vincentelli
Chief Technical Advisor
Cadence Design Systems, Inc.

Rome
June 1999
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Moving to
System-on-Chip Design

The continuous progress in silicon process technology developments has fueled
incredible opportunities and products in the electronics marketplace. Most
recently, it has enabled unprecedented performance and functionality at a price
that is now attractive to consumers. The explosive growth in silicon capacity and
the consumer use of electronic products has pressured the design technology com-
munities to quickly harness its potential. Although silicon process technology con-
tinues to evolve at an accelerated pace, design reuse and design automation
technology are now seen as the major technical barriers to progress, and this pro-
ductivity gap is increasing rapidly. As shown in Table 1.1, the combination of
increasing complexity, first and derivative design cycle reductions, design reuse,
and application convergence creates a fundamental and unprecedented disconti-
nuity in electronics design. These forecast levels of integrated circuit (IC) process
technology will enable fully integrating complex systems on single chips, but only
if design methodologies can keep pace.

Incremental changes to current methodologies for IC design are inadequate
for enabling the full potential for system on chip (SOC) integration that is offered
by advanced IC process technology. A paradigm shift comparable to the advent of
cell library-driven application-specific integrated circuit (ASIC) design in the early
1980s is needed to move to the next design productivity level. Such a methodol-
ogy shift needs to reduce development time and effort, increase predictability, and
reduce the risk involved in complex SOC design and manufacturing.

The required shift for SOC design rests on two industrial trends: the develop-
ment of application-oriented IC integration platforms for rapid design of SOC
devices and derivatives, and the wide availability of reusable virtual components.

The methodology discussed in this book is based on the evolution of design
methodology research carried out over many years. This research was first applied
to physical IC design, then refined for constraint-driven, analog/mixed-signal

1



2 Surviving the SOC Revolution

(AMS) design, broadened to deal with hardware/software co-design for reactive
systems, and finally, generalized in system-level scope to deal with the full range of
embedded SOC design problems. The methodology has immediate applicability,
as well as the range and depth to allow further elaboration and improvement, thus
ensuring its application to SOC design problems for many years to come.

The interest in consumer products in areas such as communications, multi-
media, and automotive is the key economic driver for the electronics revolu-
tion. The design of embedded consumer electronics is rapidly changing.
Changes in the marketplace are demanding commensurate changes in design
methodologies and toolsets. Some of the market-driven forces for change are:

Shrinking product design schedules and life spans
Conforming products to complex interoperability standards, either de jure
(type approval in communications markets) or de facto (cable companies
acceptance of the set-top market)
Lack of time for product iterations due to implementation errors: a failure
to hit market windows equals product death
Converging communications and computing into single products and
chipsets

These forces have a profound effect on design methodology. This book
addresses what needs to be done to bring design technology in line with IC



Moving to System-on-Chip Design 3

process technology. It explores ways to look at the problem in a new way to
make this transition as quickly and painlessly as possible. To better understand
the direction we need to go, we need to examine where we stand now in the
evolution of design methodology.

The Evolution of Design Methodology

The transition from transistor-based to gate-based design ushered in ASIC,
provided huge productivity growth, and made concepts such as gate arrays a
reality. It also fostered the restructuring of engineering organizations, gave birth
to new industries, and altered the relationship between designer and design by
introducing a new level of abstraction.

Historically, our industry seems to follow a cycle: IC process technology
changes, and design technology responds to the change with creative but
incomplete solutions. Design methodology then adapts these solutions to the
new process, creating incremental increases in productivity. During the more
dramatic periods, such as the one we are currently in, a major leap up the
abstraction curve is needed to exploit the process technology. With that leap, the
industry undergoes a fundamental reorganization—design is not just done
faster, it is done differently by different people, and it is supported by different
structures. Over the past 25 years, this has occurred about every 10 years with
a three-year overlap of driving methodologies.

We are now entering the era of block-based design (BBD), heading toward
virtual component-based SOC design, which is driven by our ability to harness
reusable virtual components (VC), a form of intellectual property (IP), and
deliver it on interconnect-dominated deep submicron (DSM) devices. In just
a few years, the silicon substrate will look like the printed circuit board (PCB)
world as shown in Figure 1.1, and reusable designs will be created and packaged
as predictable, preverified VCs with plug-and-play standard interfaces.

What Is SOC Design?
To begin, we need to define SOC design in a standard and industrially acceptable
way. The Virtual Socket Interface (VSI) Alliance, formed in 1996 to foster the devel-
opment and recognition of standards for designing and integrating reusable blocks
of IP, defines system chip as a “highly integrated device. It is also known as system
on silicon, system-on-a-chip, system-LSI, system-ASIC, and as a system-level inte-
gration (SLI) device.”1 Dataquest has defined an SLI device as having “greater than
100 thousand gates with at least one programmable core and on-chip memory.”2

1. VSI Alliance Glossary, VSI Alliance, March 1998.

2. ibid.
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In this book, SOC design is defined as a complex IC that integrates the
major functional elements of a complete end-product into a single chip or
chipset. In general, SOC design incorporates a programmable processor, on-
chip memory, and accelerating function units implemented in hardware. It
also interfaces to peripheral devices and/or the real world. SOC designs
encompass both hardware and software components. Because SOC designs
can interface to the real world, they often incorporate analog components,
and can, in the future, also include opto/microelectronic mechanical system
(O/MEMS) components.

The Electronic Industries Association of Japan (EIAJ) has defined an
Electronic Design Automation (EDA) Technology Roadmap for designing a
“cyber-giga-chip” by the year 2002.3 This design incorporates DRAM, flash
memory, CPU cores, digital signal processor (DSP) cores, signal processing and
protocol control hardware, analog blocks, dedicated hardware units, and on-

3. “Cyber-Giga-Chip in 2002,” EDA Technofair handout, EIAJ EDA Technology Roadmap Group,
February 1998.
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chip buses. This is a good illustration of the complexity that future SOC designs
will need to achieve.

Linchpin Technologies
Discontinuities caused by a change in silicon process technology demand that
new design technology be invented. Linchpin technologies are the building
blocks for transitioning to the next level of design methodology. Typically, the
new technology is partnered with an ad hoc methodology adopted early on to
form systems effective enough at addressing the first set of design challenges to
deliver products. Because these new technologies offer significant improve-
ments in design capability, functionality, and cost, as well as creating a change in
design methodology and engineering procedures, they are recognized as essen-
tial steps for broad change to occur.

Looking back on the evolution of design technology, many linchpins are
easily identifiable (see Figure 1.2). For example, gate-level simulation enabled
an increase in design verification capacity sufficient to address the silicon capac-
ity potential. But designing within the bounds of the gate-level logic meant
accepting modeling accuracy limitations of the simulator and associated
libraries, which resulted in a fundamental design methodology change.
Similarly, register-transfer level (RTL) synthesis technology facilitated an
increase in designer productivity, but required the transition to RTL-based
design capture, and verification and acceptance of the predictability limitations
of optimization technology. Often the linchpin technologies are cumulative,
that is, they are built upon each other to make a synergistic improvement in
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productivity. They also must support the mix of legacy designs that use previ-
ous design methods.

Design Methodologies

The primary design methods used today can be divided, as illustrated in
Figure 1.3, into three segments: timing-driven design (TDD), BBD, and
platform-based design (PBD). These segments vary depending on the linch-
pin technologies used, the design capacity, and the level of and investment in
design reuse.

Looking at the electronic design market in this way helps to identify where
a given design team is in the design methodology evolution. It also helps in
determining which design technologies and methodologies are needed to facil-
itate the transition to the next step. History has shown that the companies that
can make the transitions the fastest have success in the market.

Note, however, that there are gray areas between segments where some
design groups can be found. Also, the transition process is serial in nature.
Moving from TDD to PBD is a multistep process. While larger investments
and sharper focus can reduce the total transition time, a BBD experiential foun-
dation is necessary to transition to PBD.

The following sections describe the design methodology segments, and
identify the necessary linchpin technologies and methodology transitions.
Table 1.2 summarizes some of the design characteristics that pertain to the dif-
ferent methodologies.
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Timing-Driven Design
TDD is the best approach for designing moderately sized and complex ASICs,
consisting primarily of new logic (little if any reuse) on DSM processes, with-
out a significant utilization of hierarchical design. The design methodology
prior to TDD is area-driven design (ADD). In ADD, logic minimization is key.
Design teams using this methodology tend to be small and homogeneous.
When they encounter problems in meeting performance or power constraints
that require shifting to a TDD methodology, the following symptoms are often
observed:

Looping between synthesis and placement without convergence on area
and timing
Long turnaround times for each loop to the ASIC vendor
Unanticipated chip-size growth late in the design process
Repeated area, power, and timing reoptimizations
Late creation of adequate manufacturing test vectors

These symptoms are often caused by the following:

Ineffective or no floor planning at the RTL or gate level
No process for managing and incrementally incorporating late RTL design
changes into the physical design
Pushing the technology limits beyond what a traditional netlist handoff can
support
Ineffective modeling of the chip infrastructure (clock, test, power) during
floor planning
Mishandling of datapath logic

DSM technology exacerbates the interconnect management weaknesses of
the wire load-based delay model. The inaccuracies of this statistical model
become severe with DSM and lead to non-convergence of the constraint/delay
calculations. Today’s product complexity, combined with radically higher gate
counts and shorter time to market (TTM), demands that design and verifica-
tion be accelerated, trade-offs be made at higher levels of design, and inter-
connect be managed throughout the process and not left until the end. These
all argue against ADD’s synthesis-centric flat design approach.

A more floor plan-centric design methodology that supports incremental
change can alleviate these problems. Floor planning and timing analysis tools
can be used to determine where in the design the placement-sensitive areas are
located. The methodology then allows placement results to be tightly coupled
into the design optimization process.

Going from RTL to silicon represents the greatest schedule risk for designs
that are timing-, area-, or power-constraint driven. Typically, this is managed by
starting the physical design well before the RTL verification is completed.
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Overlapping these processes reduces TTM and controls the schedule risk, but at
the expense of higher non-recurring engineering costs. To successfully execute
concurrent design in a flat chip environment requires change-management and
floor-plan control processes that are able to incorporate the inevitable “last bug
fixes” in the RTL into the physical design and still keep the optimizations already
accomplished. Table 1.3 summarizes the benefits and challenges of TDD.

TDD Linchpin Technologies
TDD relies upon the following linchpin technologies:

Interactive floor-planning tools These give accurate delay and area estimates
earlier in the design process, thereby addressing the timing and area
convergence problem between synthesis and place and route.

Static-timing analysis tools These enable a designer to identify timing
problems quickly and perform timing optimization across the entire ASIC.
The designer can perform most functional verification at RTL with simpler
timing views, reduce the amount of slower timing-accurate gate-level
simulations, and rely upon static timing analysis to catch any potential
timing-related errors, thereby improving productivity significantly.
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Using compilers to move design to higher abstractions with timing predictability
For example, a behavioral synthesis tool can be linked to a datapath
compiler, providing an operational vehicle for planning and implementing
datapath-dominated designs rapidly. This moves critical decision trade-offs
into the behavioral level, while backing it up with a high-performance
path to an efficient datapath layout. Applied appropriately, it can radically
improve a design’s overall performance. It also introduces layout
optimization at the system level, which is needed in block- and
platform-based designs.

Block-Based Design
Increasing design complexity, a new relationship between system, RTL, and
physical design, and an increasing opportunistic reuse of system-level functions
are reasons to move beyond TDD methodology. Symptoms to look for in
determining whether a BBD methodology is more appropriate include:

The design team is becoming more application-specific, and subsystems,
such as embedded processing, digital data compression, and error
correction, are required.
Multiple design teams are formed to work on specific parts of the design.
ASIC engineers are having difficulty developing realistic and
comprehensive testbenches.
Interface timing errors between subsystems are increasing dramatically.
The design team is looking for VCs outside of their group to help
accelerate product development.

Ideally, BBD is behaviorally modeled at the system level, where
hardware/software trade-offs and functional hardware/software co-verification
using software simulation and/or hardware emulation is performed. The new
design components are then partitioned and mapped onto specified functional
RTL blocks, which are then designed to budgeted timing, power, and area con-
straints. This is in contrast to the TDD approach, where the RTL is captured
along synthesis-restriction boundaries.Within limited application spaces (highly
algorithmic), behavioral synthesis can be coupled with datapath compilation
to implement some of the new functions.

Typically, many of the opportunistically reused functions in BBD are poorly
characterized, subject to modification, and require re-verification. The pro-
grammable processor cores (DSPs, microcontrollers, microprocessors) are
imported as either predictable, preverified hard or firm (netlist and floor plan)
blocks, or as an RTL design to be modified and re-verified. The functional ver-
ification process is supported by extracting testbench data from the system-
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level simulation. This represents a shift from “ASIC-out” verification to
“system-in” verification.4 This system-in approach becomes the only way to
ensure that realistic testbenches that cover the majority of worst-case, complex
environmental scenarios are used.

Designs of this complexity usually employ a bus architecture, either
processor-determined or custom. A predominately flat manufacturing test
architecture is used. Full and partial scan, mux-based, and built-in-self-test
(BIST) are all possible, depending on the coverage, design for manufactura-
bility, and area/cost issues. Timing analysis is done both in a hierarchical and
flat context. Top-down planning creates individual block budgets to allow
synthesis to analyze timing hierarchically. Designers then select either flat or
hierarchical extraction of the final routing, with flat or hierarchical detailed
timing analysis dependent upon the specific accuracy needs of the design.
The design requirements determine the degree of accuracy tolerance or
guard band that is required for design convergence. This guard band man-
agement becomes especially critical in DSM design. Typical technologies are

and below, well within the DSM interconnect effects domain. Design
sizes range from 150K to 1.5M gates. For designs below 150K, the hierar-
chical overhead is not justified, and as designs approach 1.5M gates, PBD’s
reuse economies are essential to be more competitive.

BBD needs an effective block-level floor planner that can quickly estimate
RTL block sizes. Creating viable budgets for all the blocks and their intercon-
nect is essential to achieving convergence. This convergence can be signifi-
cantly improved through the use of synthesis tools that comprehend physical
design ramifications. The physical block is hierarchical down through place-
ment, and routing is often done flat except for hard cores, such as memories,
small mixed-signal blocks, and possibly processors.

In BBD, handoff between the design team and an ASIC vendor often
occurs at a lower level than in TDD. A fully placed netlist is normal, with
many design teams choosing to take the design all the way to GDSII using
vendor libraries, hard VCs, and memories, as appropriate. While RTL handoff
is attractive, experience shows that such handoffs really only work in BBD
when it is supported by a joint design process between the product and ASIC
vendor design teams. Without preverified, pre-characterized blocks as the
dominant design content, RTL handoff is impractical for all but the least
aggressive designs.

4. Glenn Abood, “System Chip Verification: Moving From ‘ASIC-out’ to ‘System-In’ Methodologies,”

Electronic Design, November 3, 1997, pp. 206-207.
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BBD Linchpin Technologies
BBD relies upon the following linchpin technologies:

Application-specific, high-level system algorithmic analysis tools These tools
provide productivity in modeling system algorithms and system
operating environment. They can be linked to hardware description
language (HDL) verification tools (Verilog,VHDL) through
co-simulation technologies and standards, such as the Open Model
Interface (OMI), and to HDL-based design capabilities, such as RTL
synthesis via HDL generation and behavioral synthesis.

Block floor planning This facilitates interconnect management decision-
making based upon RTL estimations for improved TTM through faster
area, timing, and power convergence. It provides the specific constraint
budgets in the context of the top-level chip interconnect. It also supports
the infrastructure models for clock, test, and bus architectures, which is
the basis for true hierarchical block-based timing abstraction. The ability
to abstract an accurate, loaded timing view of the block enables the
designer and tools to focus on block-to-block interface design and
optimization, which is a key step in reducing design complexity through
higher abstraction.
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Integrated synthesis and physical design This technology enables a designer to
manage the increased influence of physical design effects during the
synthesis process by eliminating the need to iterate between separate
synthesis and placement and routing tools to achieve design convergence.
Using the integrated combination, the synthesis process better meets the
top-level constraints in a more predictable manner.

Platform-Based Design
PBD is the next step in the technology evolution. PBD encompasses the cumu-
lative capabilities of the TDD and BBD technologies, plus extensive design
reuse and design hierarchy. PBD can decrease the overall TTM for first prod-
ucts, and expand the opportunities and speed of delivering derivative products.
Symptoms to look for in determining whether a PBD methodology is more
appropriate include:

A significant number of functional designs are repeated within and across
groups, yet little reuse is occurring between projects, and what does occur
is at RTL.
New convergence markets cannot be engaged with existing expertise and
resources.
Functional design bugs are causing multiple design iterations and/or re-spins.
The competition is getting to market first and getting derivative products
out faster.
Project post-mortems have shown that architectural trade-offs
(hardware/software, VC selections) have been suboptimal. Changes in the
derivative products are abandoned because of the risk of introducing errors.
ICs are spending too much time on the test equipment during production,
thus raising overall costs.
Pre-existing VCs must be constantly redesigned.

Like BBD, PBD is a hierarchical design methodology that starts at the sys-
tem level. Where PBD differs from BBD is that it achieves its high productiv-
ity through extensive, planned design reuse. Productivity is increased by using
predictable, preverified blocks that have standardized interfaces. The better
planned the design reuse, the less changes are made to the functional blocks.
PBD methodology separates design into two areas of focus: block authoring
and system-chip integration.

Block authoring primarily uses a methodology suited to the block type
(TDD, BBD, AMS, Generator), but the block is created so that it interfaces eas-
ily with multiple target designs. To be effective, two new design concepts must
be established: interface standardization and virtual system design.
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In interface standardization, many different design teams, both internal and
external to the company, can do block authoring, as long as they are all using
the same interface specifications and design methodology guidelines. These
interface standards can be product- or application-specific.

For anticipating the target system design, the block author must establish the
system constraints necessary for block design. Virtual system design creates the
context for answering such questions as:

What power profile is needed?
Should I supply the block with multiple manufacturing test options?
Should this be a hard, firm, or soft block, or all three?
Should there be multiple block configurations and aspect ratios?
Should this block be structured for interfaces with a single bus or multiple
bus types?
What sort of flexibility should I allow for clocking schemes and internal
clock distribution?

System-chip integration focuses on designing and verifying the system archi-
tecture and the interfaces between the blocks. The deliverables from the block
author to the system integrator are standardized (most likely VSI or internal
VSI-based variant) and multilevel, representing the design from system through
physical abstraction levels.

Integration starts with partitioning the system around the pre-existing
block-level functions and identifying the new or differentiating functions
needed. This partitioning is done at the system level, along with performance
analysis, hardware/software design trade-offs, and functional verification.

Typically, PBD is either a derivative design with added functionality, or a con-
vergence design where previously separate functions are integrated. Therefore,
the pre-existing blocks can be accurately estimated and the design variability
limited to the interface architecture and the new blocks. The verification test-
bench is driven from the system level with system environment-based stimulus.

PBD focuses around a standardized bus architecture or architectures, and
gains its productivity by minimizing the amount of custom interface design or
modification per block. The manufacturing test design is incorporated into the
standard interfaces to support each block’s specific test methodology. This
allows for a hierarchical, heterogeneous test architecture, supporting BIST, scan-
BIST, full and partial scan, mux-based, and Joint Test Action Group
(JTAG)/boundary scan methods that can be run in parallel and can make use
of the programmable core(s) as test controllers.

Testing these large block-oriented chips in a cost-effective amount of time
is a critical consideration at the system-design level, since tester time is getting
very expensive. Merely satisfying a test coverage target is not sufficient. Timing
analysis is primarily hierarchical and based upon pre-characterized block tim-
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ing. Delay calculation, where most tight timing and critical paths are contained
within the blocks, is also hierarchical. A significant difference from BBD is that
the routing is hierarchical where interblock routing is to and from area-based
block connectors, and it is constraint-driven to ensure that signal integrity and
interface timing requirements are met.

The physical design assembly is a key stage in the design, since most PBD
devices are built upon and smaller process technologies, with DSM
interconnect-dominated delays. Addressing the DSM effects in the physical
interface design is a challenge.

PBD uses predictable, preverified blocks of primarily firm or hard forms.
These blocks can be archived in a soft form for process migration, but inte-
grated in a firm or hard form. In some cases, the detailed physical view of the
hard VC is merged in by the manufacturer for security and complexity reduc-
tion. Firm VCs are used to represent aspect ratio flexible portions of the design.
The hard VCs are used for the chip’s highly optimized functions, but have more
constrained placement requirements. Some block authors provide multiple
aspect ratio options of their firm and hard VCs to ease the puzzle-fitting chal-
lenge. Less critical interface and support functions can be represented in soft
forms and “flowed” into the design during the integration process.

The range of handoffs between designer and silicon vendor broadens for
PBD. PBD is likely to begin using the Customer-Owned Tooling (COT)-
based placed netlist/GDSII handoff as in BBD. However, as the design
becomes dominated by predictable, preverified reusable blocks, a variant of
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RTL sign-off becomes a viable option. We expect that silicon vendors will
provide processes for handing off designs at the RTL/block levels. Successful
design factories will depend on such processes both to manage the vagaries
of DSM and to meet their customers TTM challenges. In six-month prod-
uct cycles, physical design cycles of three to five months are not acceptable.

PBD Linchpin Technologies
PBD is enabled by the following linchpin technologies:

High-level, system-level algorithmic and architectural design tools and
hardware/software co-design technologies These tools, which are beginning to
emerge5 and will serve as the next-generation functional design cockpit,
provide the environment to select the components, partition the hardware and
software, set the interface and new block constraints, and perform functional
verification by leveraging high-speed comprehensive models ofVCs.

Physical layout tools focused on bus planning and block integration These tools,
used early in the design process through tape-out, are critical to PBD. The
physical design effects influence chip topology and design architecture. Early
feedback on the effects is critical to project success. For bus-dominated
interblock routing, shape-based routing technology is important. Such
tools enable the predictable, constraint-driven, hierarchical place and
route necessary for PBD.

VC-authoring functional verification tools As the focus of PBD
verification shifts to interfaces—block to block, block to bus, hardware to
software, digital to analog, and chip to environment—tools for authoring
VCs must evolve to provide a thorough verification of the block function
and a separation of VC interfaces from core function. OMI-compliant
simulation tools allow co-simulation at various levels of abstraction, from
system algorithm/architecture level to gate level. This also enables the
environment-driven, system-level verification test suites to be used
throughout the verification levels. Emerging coverage tools allow the VC
developer to assess and provide VC verification to the integrator.

Reuse—The Key to SOC Design
The previous section discussed the design methodology transitions that a com-
pany can go through on the path toward effective system chip design. Now

5. G. Martin and B. Salefski, “Methodology and Technology for Design of Communications and Multimedia

Products via System-Level IP Integration,” Proceedings of Design Automation and Test in Europe Designer Track,

February 1998, pp. 11-18.



Moving to System-on-Chip Design 17

we’ll look at the same transition path from a VC and design reuse perspective.
Note that the methodology and reuse evolutions are mutually enabling, but do
not necessarily occur in unison.

As we move forward in the transition to SOC, TTM assumes a dominant
role in product planning and development cycles. The National Technology
Roadmap for Semiconductors asserts that design sharing is paramount to real-
izing their projections.6 Reuse is a requirement for leadership in the near term
and survival in the medium to long term. Therefore, while the VSI Alliance
moves to seed the emerging SOC industry, companies are developing intra-
company reuse solutions not only to ratify what the VSI Alliance has pro-
posed, but also to establish the infrastructure needed to change their way of
doing design. What is being discovered is that even within the proprietary IP-
friendly confines of a single company, reuse does not fit neatly into a tool,
process, or technology. To experience productivity benefits from reuse requires
having a system that addresses IP integration, creation, access, protection, value
recognition, motivation, and support. Until you have a viable IP system develop-
ment plan, you do not know what to author, what to buy, what to redesign, what stan-
dards to use, or what barriers must be overcome (technical and non-technical).

Reusing IP has long been touted as the fastest way to increasing productivity.
Terms like “design factory” and “chip assembly” conjure up visions of Henry Ford-
like assembly lines with engineers putting systems together out of parts previously
designed in another group, in another country, in another company.Yet while this
has been pursued over the past two decades at the highest levels of management
in the electronic design and software development industries, we have only seen
some small victories (for example, cell libraries, software object libraries) and a lot
of unfulfilled promise. Why do we keep trying? Where do we fail?

Reuse does work, and when it works, it has spectacular results. At its most
basic level, if an engineer or engineering team does something once and is then
asked to do it or something similar again, a productivity increase is typically
observed in the second pass. In this case, what is being reused is the knowledge
in team members’ heads as well as their experience with the processes, tools,
and technology they used. However, if another engineer or engineering team
is asked to execute the second pass, little productivity increase is observed.Why
does this happen?

Is this just a “not invented here” engineering viewpoint?
A lack of adequate documentation and standards?
Limited access to what has been done?
The perception in design that learning and adapting what has been done
takes longer than starting from a specification?

6. National Technology Roadmap for Semiconductors, August 1994; and National Technology Roadmap
for Semiconductors, 1997, available at www.sematech.org/public/roadmap/index.htm.
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An unwillingness to accept a heavily constrained environment?
An inability to create an acceptably constrained environment?
A failure to see the difference between having someone use what has been
done and having someone change what has been done to use it?

It is probably some or all of the above. But the impetus to overcome these
barriers must come from inside both engineering and management.

The issue of IP reuse can be looked at in several ways. For it is in reuse that
all of the technical, organizational, and cultural barriers come together.

Models of Reuse

This section defines four reuse models: personal, source, core, and VC. It also
outlines the capabilities that are necessary to transition to the next stage of
reuse. Figure 1.4 shows how the reuse models map to the TDD, BBD, PBD
design methodology evolution. In our description of the reuse models, we use
the term “portfolio” to represent the human talent and technological knowl-
edge that pre-exists before attempting a new design project.

In the earlier phases, reuse is largely opportunistic and initiated at design imple-
mentation. As reuse matures and becomes part of the culture, it is planned and
considered in the earliest phases of design and product planning, ultimately arriv-
ing at an infrastructure that supports full separation of authoring and integration.
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Personal Reuse Portfolio
In the traditional TDD ASIC methodologies, reuse is human knowledge-
based, and is exercised through reapplying personal or team design experience
to produce derivative projects.

The transition from personal reuse to the next stage focuses mainly on infra-
structure and laying the groundwork for future enhancements. Realizing the
full potential for reuse requires solving certain technical and business issues.
However, in many corporate environments, the biggest hurdle in the change
process is overcoming the engineering tendency to invent at every opportunity.

Table 1.7 summarizes the functions and technologies that need to be in
place to transition to source reuse. This first step gets people looking at exist-
ing designs from a reuse perspective and gives engineers an opportunity to
identify the barriers to reuse. It also sends strong messages that reuse will be
pursued both in investment funding and engineering time.
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Source Reuse Portfolio
At the entry point into BBD, the opportunity to reuse designs created else-
where begins to open up. The function, constraints, and instance-based context
for a block are known as a result of a top-down system design process. Source
reuse can speed up the start of a design by providing a pre-existing RTL or
netlist-level design that can then be modified to meet the system constraints.
The productivity benefits of this approach, however, are debatable depending
on how well it matches the system constraints, its complexity, whether it is
accompanied by an appropriate testbench, whether the original designer is
available to answer questions, and the openness of the adopting designer to
using an existing design. In addition to all these, the most significant barrier in
many large companies is providing designers and design teams information on
what is available in an accessible, concise form.

For purposes of comparison, the productivity factor is defined as the ratio of the time required to reuse an exist-
ing block (including modification and re-verification) to the time required to do an original design, given a set of
block and system design specifications.
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The transition from source to core reuse typically occurs in parallel with a
maturing top-down, hierarchical, BBD methodology. The primary objective
in this stage is to upgrade the VC portfolio to a level of documentation, sup-
port, and implementation that guarantees an increase in productivity. At the
same time, the VC portfolio changes from general purpose, unverified VC
source files to application-proven cores with a physical and project history. The
system integrator can expect to find the following: more hard cores that are
already implemented on the target technology; high-value anchor VCs that
tend to dictate integration elements such as buses; VC cores that have been val-
idated and tested before entry into the database; established and mature third-
party IP relationships; and a set of models that are designed to be directly usable
in the chip integration methodology and tools system. Table 1.9 summarizes
the functions that need to be in place to transition to core reuse.

Among the technologies that play a key role in this transition are those that
port the legacy VCs to a new technology. These include methods for soft,
firm, and hard VCs, including extraction, resizing, and retargeting at the GDSII
level. The retargeting ideally supports a performance/power/area optimiza-
tion as an integral element in achieving the specific block objectives. The
model development tools should be a natural outgrowth of block authoring
design methods. These will be significantly enabled as the promised technol-
ogy advances in timing characterization, RTL/block floor planning, and
power characterization for real world DSM designs, with their non-trivial
clocking schemes and state-dependent delay functions. Also required at this
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point are tools that support a VC qualification process as a screen for entry in
the VC reuse database. In addition to conventional RTL linting tools, which
are tuned to the intracompany VC sharing rules, coverage analyzers and model
cross verifiers will establish a consistent level ofVC quality. Block authors will
also begin to demand model formal equivalence checking tools and methods
to assure model versus implementation coherence. Finally, the development
of a top-down, system-in, design verification strategy requires viable tech-
nologies for driving the results and tests from algorithmic, behavioral, and
hardware/software co-verification testbenches through partitioning and onto
the inputs and outputs of the reusable blocks.

Core Reuse Portfolio
As a design organization matures toward a hierarchical BBD methodology, a
reusable VC portfolio is refined and improved in the following ways:

More information is available on the block realization in silicon (area,
timing, footprint, power).
More blocks appear in firm or hard form.
Reusable, placed netlist is in a relevant technology library (firm).
Qualification constraints exist for entering into the reuse VC database and
pruning existing low-value entries.
There is documented data on the context in which the block has been
used and/or reused.
Third-party VC blocks are integrated, and specific details on the
engagement process with the vendor exist.
More participation and mechanisms supporting the block occur from the
author for internal VCs as a result of refinements to the incentive program.

At this point, the combination of a mature BBD methodology, increased reuse,
and management/market pressures tends to break down some of the non-
technical reuse barriers. Other benefits include: the availability of larger, more
complex blocks, often as GDSII hard cores; the use of high-level models (above
RTL) as a consequence of more top-down design methods; and the formation
of design teams consisting of system designers, chip integrators, and block
authors. In addition, testbenches for the blocks are derived more from system-
level tests than from independent development.

The final transition creates a VC portfolio that supports a true plug and
play environment. This means separating authoring and integration in a prac-
tical fashion by designing the key integration platform architectures and
incorporating their implicit virtual system constraints into the IP authoring
process. New tools emerge that address developing an integration platform
into which selected pre-characterized and preverified VCs can be plugged
without modification.
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With the move toward preverified components, verification shifts to an
interface-based focus in which the base functionality is assumed to be verified at
the system level. Because more VCs are likely to be hard,VC migration tools will
mature, providing a port across technology transitions. In addition to all perfor-
mance sensitive VCs being pre-staged in silicon, soft or firm VCs will be provided
in an emulation form for high-performance hardware/software verification.
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VC Reuse Portfolio
The transition of IP into a VC status is where the greatest productivity benefits are
realized and where the separation of authoring and integration is most clearly
observed. These VCs are pre-characterized, preverified, pre-modeled blocks that
have been designed to target a specific virtual system environment. This virtual sys-
tem design, which consists of a range of operational constraints bounded by per-
formance, power, bus, reliability, manufacturability verification characteristics, cost,
and I/O, is applied to a specific market/application domain. This reuse domain
includes the functional blocks, each blocks format and flexibility, the integration
architecture into which the blocks will plug, the models required for VC evaluation
and verification, and all of the constraints to which the blocks must conform.

Within the application domain, the IP is differentiated largely by the ele-
gance of the design, the completeness of the models/documentation, and the
options presented within the domain context. The bus speed and protocol can
be given, but the area/power/speed ratio and supported bit width are often
variable. The test architecture might dictate that blocks be either full scan or full
BIST with a chip level JTAG, but IP will be differentiated on the coverage to
vector ratio and even the failure analysis hooks provided. The VCs are pre-
staged and qualified before being added to the environment. Because the blocks
are known entities, designed to fit together without change, the productivity
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from this type of environment can increase more than l0x. The penalties in
area or performance to get such TTM benefits are less than one would antic-
ipate because of the optimization of the domain-focused VC portfolio to the
technology and manufacturing constraints.

Developing an Integration-Centric Approach

In addition to adopting a VC reuse portfolio, a different perspective is needed
to realize the necessary productivity increase required to address TTM and
design realities. To achieve new solutions, we need to look at the issues from an
integration-centric perspective rather than an IP-centric one, as summarized in
Table 1.13.

Some of the steps that need to be taken to implement an integration-
centric approach for reuse are as follows:

1. Narrow the design focus to a target application family domain. The scope
of the application domain is a business decision, tempered by the technical
demands for leverage. The business issues center around product market
analysis, derivative product cycles, possible convergence of product lines,
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and the differentiating design/product elements that distinguish the
products. Where TTM and convergence of applications or software
algorithms are critical differentiators, moving to a VC reuse portfolio
and PBD methodology is essential.

2. Identify the VC blocks that are required for each domain. Separate the VCs
as follows:

differentiating and needing control
acquired or available in the current market
internal legacy IP

3. Develop a virtual system design for the target platform that identifies the
VC blocks, the integration architecture, the block constraint ranges, the
models required, and the design and chip integration methods to author,
integrate, and verify the product design. Extend your guideline-oriented
documentation to comprehensive VC authoring and integration guides
that include processes, design rules, and architecture.

4. Socketize/productize your application domain VCs to conform to the
virtual system constraints. This includes determining multiple
implementations (low power, high performance), soft versus firm versus
hard, and creating and verifying high-level models. Depending on the
function, it also includes preverifying the core function and isolating the
interface areas for both verifying and customizing. To achieve the
optimal value, all performance critical VCs should be pre-staged and
fully characterized in the target silicon technology, much the same way
you would do with a cell library. For verification purposes, pre-staging
the VC for a field-programmable gate array (FPGA)-type prototyping/
emulation environment (for example, Aptix or Quickturn) is also
recommended for any VC that is involved in a subjective or
high-performance verification environment.

5. Demonstrate and document the new application environment on a pilot
project to establish that the virtual architecture, authoring and integration
methods, and software environments are ready. This also identifies the
refinements necessary for proliferating the new design technology across
the organization.

6. Optimize the authoring and integration design processes and guides based
on the pilot experience. This is an ongoing process as technology and
market characteristics evolve.

7. Proliferate the platform across the organization. Using both the
momentum and documentation from the pilot, deploy measurement
methods that will allow the productivity benefits to be tracked and best
practices identified.
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SOC and Productivity

Many elements must come together to achieve SOC. The device-level tech-
nologies necessary to support the silicon processing evolution to sub-0.2
micron designs through manufacturing and test are still being defined. The
design flows and tools for authoring and chip integration are immature and, in
some cases, still to be delivered. However, two key design technologies are
emerging to address the productivity side of SOC. These technologies, inte-
gration platform and interface-based design, represent an amalgam of design
principles, tools, architectures, methodologies, and management. But before we
explore these key technologies, we will look at the steps and tasks involved in
SOC design.
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Overview of the SOC
Design Process

Creating a systematic environment is critical in realizing the potential of SOC
design. Figure 2.1 depicts the basic elements of such an environment. This chap-
ter describes each of these areas briefly and in the context of platform-based
design; subsequent chapters will discuss the steps and elements involved in
platform-based design in more detail. Figure 2.1 will also be used in each chapter

2
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to highlight which areas of platform-based design we are addressing. These dia-

grams are not intended to be viewed as design flow diagrams, but rather as high-

level maps of the SOC design process so that each element in the process can be

seen in relation to the others.

Block Authoring

Figure 2.2 provides a more detailed view of the block authoring process. The
role of each element is described below.

Rapid Prototyping
Rapid prototyping is a verification methodology that utilizes a combination
of real-chip versions of intellectual property (IP) blocks, emulation of IP
blocks in field-programmable gate arrays (FPGA) (typically from a register-
transfer level (RTL) source through synthesis), actual interfaces from the RTL,
and memory to provide a very high-speed emulation engine that permits
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hardware/software verification using real-world verification sources, such as
video streams. This technology is effective in many environments, especially
where hardware versions of processing elements are available. The amount of
design put into FPGAs is practically bound, and the medium for verification
is subjective in nature, for example, picture quality. Using rapid prototyping
in the authoring context is generally limited to two applications:

Insuring that the block can be synthesized to an FPGA library (when an
RTL source is supplied)
Verifying that blocks can handle real-world video, audio, or high
bandwidth data streams

Testbenches
Testbenches are tests, for example, stimulus-response, random seed, and real-world
stream, run at all levels of design from system performance to gate or transistor
level, that are used to verify the virtual component (VC). Segmenting the tests by
simulator format and application is expected, and subsetting tests for power analy-
sis, dynamic verification of timing escapes, or manufacturing is appropriate.
Modern testbenches are very much like RTL or software design and should be
documented accordingly for ease of understanding. The quality of the testbench
is a fundamental barometer for the quality of the VC. Information detailing the
testbench coverage over the VC design space is becoming a differentiator for
integrators when selecting among functionally equivalent VCs.

Coverage Analysis
Coverage analysis is a design task that analyzes activity levels in the design under
simulation to determine to what degree the testbench verifies the design func-
tionally. A variety of tools that provide a numerical grade and point to the areas
of the design that are poorly covered support this task. In some cases, they sug-
gest ways to improve the design. Tools also used during coverage analysis are
RTL “linting” tools, which determine whether the RTL satisfies style and doc-
umentation criteria. These linting tools are sometimes used for determining
whether a block should be included in the corporate IP library.

Hardware/Software Co-verification
Hardware/software co-verification verifies whether the software is operating
correctly in conjunction with the hardware. The primary intention of this sim-
ulation is to focus on the interfaces between the two, so bus-functional mod-
els can be used for most of the hardware, while the software would run on a
model of the target CPU. In this manner, the software can be considered part
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of the testbench for the hardware. Because of the many events necessary to
simulate software operations, this level of simulation needs to be fast, thus
requiring high-level models or prototypes. Often only the specific hardware
logic under test will be modeled at a lower, more detailed level. This allows the
specific data and events associated with the hardware/software interface to be
examined, while speeding through all of the initialization events.

Typically, the focus of the hardware/software co-verification is to verify that
the links between the software and hardware register sets and handshaking are
correct, although this co-verification can go as far as verifying the full func-
tionality, provided that there is sufficient simulation speed. In the block author-
ing role, this step is used to verify the combined hardware/software dual that
comprises complete programmable VCs. The software drivers can also be
matched to several different RTOSs and embedded processors.

Behavioral Simulation
Behavior simulation is based upon high-level models with abstracted data rep-
resentation that are sufficiently accurate for analyzing the design architecture
and its behavior over a range of test conditions. Behavioral models can range
from bus-functional models that only simulate the block’s interfaces (or buses)
accurately to models that accurately simulate the internal functions of the block
as well as the interfaces. The full functional models can also be timing-accurate
and have the correct data changes on the pins at the correct clock cycle and
phase, which is called a cycle-accurate model. Behavioral simulation is slower
than performance simulation, but fast enough to run many events in a short
period of time, allowing for entire systems to be verified. The test stimulus cre-
ated with behavioral simulation and its results can be used to create the design
testbench for verifying portions of the design at lower abstraction levels. The
SOC environment also demands that these models include power consumption
parameters, often as a function of software application type. The behavior of
these models must be consistent with the VC implementation and apply to
analog as well as digital blocks.

RTL/Cycle Simulation
This simulation environment is based primarily upon RTL models of func-
tions, allowing for cycle-based acceleration where applicable, as well as
gate/event-level detail where necessary. Models should have cycle accurate, or
better, timing. The intended verification goal is to determine that functions
have been correctly implemented with respect to functionality and timing.
Testbenches from higher level design abstractions can be used in conjunction
with more detailed testbenches within this simulation environment. Since this
is a relatively slow simulation environment, it is typically only used to verify
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and debug critical points in the circuit functionality that require the function
and timing detail of this level. As such, this environment can be used as the
debug and analysis environment for other verification technologies, such as
rapid prototyping and formal methods.

Formal Property Checking
Formal property checking tools can be an efficient means to verify that the
bus interface logic meets the bus protocols and does not introduce erroneous
conditions causing lock-up or other failed conditions.

This task involves embedding assertions or properties that the design must
satisfy in the hardware description language (HDL). The formal property
checker uses formal methods to determine whether the detailed RTL design
satisfies these properties under all conditions. Although useful in many appli-
cations, such as cache coherency and state machines, this verification technique
is limited to the more sophisticated VCs in the authoring space.

Analog/Mixed Signal (AMS)
This task recognizes that many analog blocks are in fact digital/analog mixed-
signal hybrids. Using an analog hardware description language (AHDL) that is
amenable to mixed simulation at the RTL level is critical for properly analyz-
ing large mixed-signal blocks and capturing design intent for reusing AHDL
and the schematic as a starting point for technology migration.

Hierarchical Static Timing/Power Analysis
Static timing analysis is emerging as a sign-off quality methodology for today’s
semiconductor technologies. This method is very amenable to hierarchical and
authoring-based block designs, provided that methods are put in place for han-
dling issues such as state dependent delays, off-block loading, clocking schemes,
and interfaces to asynchronous behaviors. A link to the event simulator is
needed for design elements that require dynamic verification. Power models
are emerging much in the same fashion as static timing. However, power cal-
culations require that a model of the node transition activity be developed, typ-
ically from a subset of the simulation testbench, and, hopefully, one that is based
on analysis of system-level behavior. Once the frequency is established, calcu-
lating the power consumption of a block based on the GDSII level of imple-
mentation and power supply voltage is feasible. In addition to verifying that
the block has satisfied the pre-established goals for implementation, this func-
tion also outputs the Virtual Socket Interface (VSI)-compliant models for the
block across the continuum of behavioral ranges, which include clock fre-
quencies and voltage ranges.



34 Surviving the SOC Revolution

Gate and Mixed-Signal Simulation
Although gate and mixed-signal simulation are shown as a single task in the
diagram in Figure 2.2, they are actually two separate disciplines. Gate-level
digital simulation is still used in some situations for timing verification and to
ensure that the RTL testbench runs after the design has been manipulated
through synthesis, buffering, and clock and I/O generation. For non-
synchronous digital design, this method is used to ensure that the timing and
power constraints have been met. A model generation technique is needed to
provide a timing model for the block user. In the mixed-signal domain, a high-
performance device-level simulator provides both the functional verification
and the power/timing verification. Again, a model generator for interfacing up
the hierarchy is required.

Formal Equivalence Checking
Equivalence checking tools verify on a mathematical basis, without testbenches,
that the gate-level netlist and the RTL are functionally equivalent. Differences,
when detected, need to be linked back to the simulation environment for
analysis and debugging.

Physical Verification
Physical verification includes extracting from the final layout a transistor model
and then determining whether the final design matches the gate-level netlist
and meets all the electrical and physical design rules. The introduction of a
block-level hierarchy to ensure that chip-level physical verification proceeds
swiftly requires that the block model be abstracted for hierarchical checking.

Manufacturing Test
Generating an appropriate set of test vectors and test access mechanisms to test
the correct manufacturing of the part (not the correct implementation of the
specification) is a fundamental element for all blocks. For soft blocks, where test
insertion is assumed, a demonstration of test coverage is appropriate to ensure
observability and controllability. This function creates a test list for the block, pro-
vides a coverage figure along with any untestable conditions or areas, and docu-
ments any test setup requirements. This is required for all blocks, digital and
analog. Standards such as IEEE 1149.1, 1149.4, P1450, and P1500 are applicable.

Virtual System Analysis
When designing a block for reuse, first the design function needs to be deter-
mined, followed by what are the design targets, constraints, external interfaces,
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and target environments. Normally, such constraints and contexts come from
the product system design. However, when the goal is a block for reuse, the
block author must execute a virtual system design of the target reuse market to
know what standards and constraints must be met. And since the block’s
reusability needs to span a range of time and designs, often the constraints are
expressed in ranges of clock frequency or power consumption or even interface
standards. The process for this is most similar to normal product system design
with derivatives planning, but requires a broader understanding of the target
application markets.

Constraint Budget
The constraint budget, which is a result of the virtual system design, describes
the design requirements in terms of area, power, and timing—both discrete and
ranged—over which the block must perform. Also included are things like test
coverage and time on tester, industry hardware/software benchmarks, bus inter-
faces, test access protocols, power access protocols, design rules for noise isola-
tion, and the list of all models needed.

Schematic
The schematic capture of the design is primarily used for analog blocks. It is
also used for capturing high-level design through block diagrams, which are
then translated into structural HDLs.

RTL/AHDL Specification
RTL is the primary hardware design language implementation model for dig-
ital designs. The RTL specification describes transformation functions per-
formed between clocked state capture structures, such as registers. This allows
the functions to be synthesized into Boolean expressions, which can then be
optimized and mapped onto a technology-specific cell library. A variety of rules
have evolved for writing RTL specifications to ensure synthesizability as well
as readability. These rules should be implemented; tools are available for check-
ing conformance to rules (see “Coverage Analysis” on page 31). Two languages
used today are VHDL and Verilog.

AHDL is the analog equivalent of RTL. The state of analog synthesis is such
that the HDL representation correlates to a design description that is suitable
for functional simulation with other blocks (digital and analog), but from which
the actual detailed design must be implemented manually (no synthesis). AHDL
does meet the documentation requirements for intent, and coupled with the
schematic of the circuit, serves as a good place for migrating the design to the
next generation technology.
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RTL/Logic/Physical Planning
This activity is the control point for the physical planning and implementation
of the block. Depending on the block type (soft, firm, or hard) and complex-
ity, floor planning can play an important role in the authoring process. Planning
considers and assigns, as needed, I/O locations, subblock placement, and logic
to regions of the block. It eventually directs placement of all cells in the target
or reference technology. It invokes a variety of specific layout functions, includ-
ing constraint refinement, synthesis or custom design, placement, clock tree,
power, and test logic generation. Fundamentally, the power of the planner lies
in its ability to accurately predict the downstream implementation results and
then to manage the interconnect through constraints to synthesis, placement,
and routing. To do this, the planner must create a predictive model starting at
RTL that includes the critical implementation objectives of area, power, and
performance. The minimization of guardband in this area enables the author to
differentiate the block from other implementations. Firm IP block types can
carry the full placement or just the floor plan forward to give the end user of
the block the most predictive model. The model for performance and the
power produced is captured and used in the IP selection part of the assembly
process.

Constraint Definition
The original constraints for the block represent the system-level requirements.
During design implementation, these constraints are refined and translated to
detailed directives for synthesis, timing, placement, and routing.

Synthesis and Custom Implementations
For digital design, two styles of detailed implementation are generally recog-
nized: synthesis from the RTL, and custom netlist design at either the cell or
transistor level. There are many combinations of these two techniques that have
been deployed successfully. The synthesis style relies on a cell library and direc-
tives to the synthesis tool to find a gate-level netlist that satisfies the design
requirements. Placement is iterated with synthesis and power-level adjustments
until an acceptable result is achieved. Test logic and clock trees are generated
and can be further adjusted during routing. This style is very efficient and effec-
tive for up to moderately aggressive designs. Some weaknesses show when the
design is large and must be partitioned, or when the design has an intrinsic
structure, such as a datapath that the synthesis tool is unable to recognize. The
increasing dominance of wires in the overall performance and power profile
of a VC is dictating that placement and synthesis need to be merged into a sin-
gle optimizing function rather than an iterative process.
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Very aggressive design techniques, such as domino logic or special low-
power muxing structures, typically require a more custom approach. The cus-
tom approach typically involves augmenting the cell library with some special
functions, then using advanced design methods where the logic and the phys-
ical design (including clock and test) are done as a single, unified design activ-
ity. For very high-value IP, where area, performance, and power are all
optimized, such as processors, custom implementations are the norm. All ana-
log blocks are custom designs.

Clock/Power/Test
The insertion of clock tree, power adjustments, and test logic can be done at
any time in the process, although usually they are added once the placement of
the logic has settled. Global routing, which is invoked at several levels depend-
ing on the degree of hierarchy in the block, takes the clock tree into consider-
ation. Automated test logic insertion is the most conventional approach and
utilizes scan-based test techniques. Built-in-self-tests (BIST), which are design
elements built into the design, generate test vectors based on a seed and then
analyze a signature to determine the result. It is vital that whatever approach is
used for the block, the test access protocol be clearly defined.

Routing
The routing of a block is always done for hard implementations and responds to
the constraints from the planning phase in terms of I/O, porosity by layer, clock
skew, and power buffering. The router is becoming the key tool for deep sub-
micron (DSM) designs for dealing with cross talk, electromigration, and a host
of other signal integrity issues that arise as geometries shrink and new materi-
als are introduced. Routers that are net to layer selective, able to provide variable
line width and tapering, able to understand the timing model for the system,
and react to delay issues dynamically are emerging as the tools of choice.

Post-Routing Optimization
Some of the routing optimization options available have improved the
area/power/performance trade-offs by significant amounts (>10 percent).
These transistor-level compaction techniques adjust power levels to tune the
circuit for performance. This reduces area and either power or performance.
Some authors of hard IP will choose to provide a block with multiple profiles,
one for low power, another for high performance. For these authors, post-
routing techniques are very useful. Similarly, when implementing a soft block,
chip integrators can take advantage of post-routing optimizations to get a dif-
ficult block into their constraint space.
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Cell Libraries
Cell libraries are the low-level functional building blocks used to build the
functional blocks. They are typically technology-specific, and contain many
different views (such as logic models, physical layout, delay tables) to support
the steps in the design flow.

Authoring Guide
The authoring guide is the design guide for IP block authors that specifies the
necessary outputs of the block authoring process, as well as the design method-
ology assumptions and requirements of the chip integration process so that the
blocks will be easily integrated. These requirements would include documen-
tation, design, tool environment, and architecture requirements.

IP Portfolio
The IP portfolio is the collection of VC blocks that have been authored to
meet the authoring guide requirements and which meet the design goals of
the set of VC designs that an integration platform is intended to serve. VC
blocks within a portfolio are tailored to work with a specific integration plat-
form to reduce the integration effort, although some VC blocks might be
general enough to be a part of multiple portfolios and work with multiple
integration platforms.

VC Delivery

Figure 2.3 provides a more detailed view of the VC delivery process. The role
of each element is described below.

Formal VC Handoff
This is the VSI-compliant, self-consistent set of models and data files, which
represent the authored block, that is passed to the chip integrator. The design
tools and processes used to create the VC models, and the design tools and
processes used to consume the VC models and build a chip, must have the same
semantic understanding of the information in the models. Tools that claim to
read or write a particular data format often only follow the syntax of that for-
mat, which might result in a different internal interpretation of the data, leav-
ing the semantic differences to be discovered by the tool user. Without
methodologies that are linked and proven semantically, surprises between
author and integrator can arise to the detriment of the end product.



Overview of the SOC Design Process 39

Protection Methods
There are a variety of encryption methods proposed by OMI and other stan-
dards bodies. In addition to encryption, there are methods proposed for water-
marking the design to permit tracing VCs through product integration. As
these methods and the legal system for exchanging VCs matures, tools for pro-
viding first-order protection of VCs will be commonplace.

Packaging of All Views
Maintaining a self-consistent set of views for VCs, with appropriate versioning
and change management, is anticipated to be an essential element in a VC deliv-
ery package. This will enable both the author and the integrator to know what
has been used and what has been changed (soft VCs are highly subject to change).
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Chip Integration

Figure 2.4 provides a more detailed view of the chip integration process. The
role of each element is described below.

Executable Specification
An executable specification is the chip or product requirements captured in
terms of explicit functionality and performance criteria. These can be trans-
lated into constraints for the rest of the design process. Traditionally, the spec-
ification is a paper document, however, by capturing the specification as a
formal set of design objectives, using simulatable, high-level models with
abstract data types and key metrics for the design performance, the specification
can be used in an interactive manner for evaluating the appropriateness of the
specification itself and testing against downstream implementation choices.
These models are typically written in C, C+ + , or SDL.
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System Analysis
System analysis develops and verifies the algorithmic elements in the design
specification. These algorithms are the base for fundamental partitioning
between hardware and software, meeting the first-order constraints of the spec-
ification, such as application standards and selecting the target technology for
implementation.

VC Selection/Integration
VC selection includes the evaluation of both the blocks available and the plat-
form elements. In platform-based design, many of the essential elements of the
platform are in place and the selection process consists largely of making refine-
ments that might be needed to meet the system requirements. For new blocks
that have not yet been developed, the interface requirements and functional
behavior are defined.

Partition/Constraint Budget
The hardware elements are partitioned, and detailed performance, power, and
interface constraints are defined. At this stage, the implementation technology
is assessed against the partitions and the integration design, and an initial risk
guardband, which identifies areas where the implementation will need partic-
ular attention, is developed. The architectural elements for power, bus, clock,
test, and I/O are all put into place, and blocks that must be modified are iden-
tified. This process is likely to be iterative with the VC selection, especially
where significant new design or platform changes are contemplated.

RTL Mapping
The design is mapped into a hierarchical RTL structure, which instantiates the
VC blocks and the selected platform elements (bus, clock, power), and kicks
off the block modifications and new block design activities.

Interface Generation
The RTL design modifications are entered to blocks that require manual inter-
face modification. For blocks designed with parameterized interfaces, the para-
meters that will drive interface logic synthesis are established. Interfaces include
all architectural as well as I/O infrastructures.

Integration Planning
The integration planner is the vehicle for physically planning in detail the loca-
tion of the blocks, the high-level routing of the buses and assembly wiring,
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considerations regarding clock trees, test logic, power controls, and analog block
location/noise analysis, and the block constraints based on the overall chip plan.
The blocks with very little guardband tolerance are either adjusted or queued
for further analysis.

Constraint Definition
The constraints are detailed based on the floor plan and used to drive the final
layout/route of the integration architecture. Critical chip-level performance
paths and power consumption are analyzed, and constraints are adjusted to
reflect the realities of interconnect wiring delays and power levels extracted
from the floor plan.

Interface Synthesis
Blocks that are set up for auto synthesis of interfaces are “wrapped” to the inte-
gration architecture.

Clock/Power/Test
This task generates the clock trees for both digital and analog, lays down the
power buses and domains, taking into account noise from all sources (digital
to analog isolation, ground bounce, simultaneous switching, and so on), and
inserts the test logic.

Hierarchical Routing with Signal Integrity
This step is the final routing of the block to block interconnect and the soft
VC blocks, which can be floor planned into regions. Hierarchical routing
requires a hybrid of high-level assembly and area-routing techniques that share
a common understanding of constraints and signal integrity. The final detailed
delays and power factors are extracted and fed into the analysis tools. The cor-
relation of assumptions and assertions made all the way up in the VC selection
phase to actual silicon will be progressively more difficult as more complex
designs (faster, larger, mixed analog and digital) are implemented on single
chips in DSM technologies. The signal integrity issues alone require a truly
constraint-driven routing system that adapts the wiring and the active ele-
ments to the requirements.

Performance Simulation
Performance simulation is based on high-level models that have limited repre-
sentation of functionality detail, but are intended to provide high-level perfor-
mance estimates for evaluating different implementation architectures. This
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simulation environment can be used to make algorithm selection, architectural
choices, such as hardware versus software partitioning trade-offs, and VC selec-
tion. It also provides estimates on the feasibility of the design goals. The simu-
lation is usually of models that represent the critical path or key functional
mode for the hardware or software, which can be code fragments that are run-
ning on high-level models of key CPU functions. Performance simulation is
very fast, because it is limited to functional detail; therefore, it can be used to
evaluate many architectural variations quickly. The performance simulation step
can be part of systems analysis.

Behavioral Simulation
Behavior simulation is based upon high-level models with abstracted data rep-
resentation that are sufficiently accurate for analyzing the design architecture
and its behavior over a range of test conditions. Behavioral models can range
from bus-functional models that only simulate the block’s interfaces (or buses)
accurately to models that accurately simulate the internal functions of the block
as well as the interfaces. The full functional models can also be timing-accurate
and have the correct data changes on the pins at the correct clock cycle and
phase, which is called a cycle-accurate model. Behavioral simulation is slower
than performance simulation, but fast enough to run many events in a short
period of time, allowing for entire systems to be verified. The test stimulus cre-
ated with behavioral simulation and its results can be used to create the design
testbench for verifying portions of the design at lower abstraction levels.

Hardware/Software Co-verification
Hardware/software verifies whether the software is operating correctly in con-
junction with the hardware. The primary intention of this simulation is to focus
on the interfaces between the two, so bus-functional models can be used for
most of the hardware, while the software would run on a model of the target
CPU. In this manner, the software can be considered part of the testbench for
the hardware. Because of the many events necessary to simulate software oper-
ations, this level of simulation needs to be fast, thus requiring high-level mod-
els. Often only the specific hardware logic under test will be modeled at a
lower, more detailed level. This allows the specific data and events associated
with the hardware/software interface to be examined, while speeding through
all of the initialization events.

Rapid Prototyping
Rapid prototyping in the chip integration phase is critical for verifying new
hardware and software design elements with existing VCs in the context of the
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integration platform architectural infrastructure. Although the operational char-
acteristics are as defined for block authoring, during chip integration this task
focuses on verifying the high performance of the design’s overall function.
Significant advantage is achieved where bonded-out core versions of the VCs
are available and interfaced to the bus architecture. In some situations, the rapid
prototype can provide a platform for application software development prior to
actual silicon avalibility, which can significantly accelerate time to market.

Formal Property/Protocol (Interface) Checker
Formal property checking tools can be an efficient means to verify that the
bus interface logic meets the bus protocols and does not introduce erroneous
conditions causing lock-up or other failed conditions.

Again, this ought to tie in with an executable interface specification where
protocols can be “policed” for illegal actions.

RTL/Cycle Simulation
This simulation environment is based primarily upon RTL models of func-
tions, allowing for cycle-based acceleration where applicable, as well as
gate/event-level detail where necessary Models should have cycle-accurate, or
better, timing. The intended verification goal is to determine that functions
have been correctly implemented with respect to functionality and timing.
Testbenches from higher level design abstractions can be used in conjunction
with more detailed testbenches within this simulation environment. Since this
is a relatively slow simulation environment, it is typically only used to verify
and debug critical points in the circuit functionality that require the function
and timing detail of this level.

Hierarchical, Static Timing, and Power Analysis
Static timing analysis provides a comprehensive verification of the design’s
timing behavior by accumulating delays on all valid logic paths in the design.
This is used to confirm that all timing goals and constraints are met. This
method can then be applied hierarchically, where path delays and timing con-
straints can be calculated for a block and then represented on the top-level
pins of the block. Determining which valid logic paths to calculate is a design
challenge that often requires dynamic simulation; hence, static timing analysis
and simulation are complementary verification methods. Power analysis is
another complementary verification step that can be calculated on a hierar-
chical basis. Power calculation is most significantly influenced by circuit
switching, so an estimation of switching is necessary, either from dynamic sim-
ulation or from estimations based upon clock rates.
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Coverage Analysis
Coverage analysis tools can be used to determine how effective or robust
the testbenches are. They can determine the number of logic states tested
by the testbench, whether all possible branches in the RTL have been exer-
cised, or other ways in which the intended or potential functionality of the
design has been tested.

Formal Equivalence Checking
Formal equivalence checking uses mathematical techniques to prove the equiv-
alence of two representations of a design. Typically, this is used to prove the
equivalence of a gate-level representation with an RTL representation, thus
validating the underlying assumption that no functional change to the design
has occurred.

Physical Verification
Physical verification includes extracting from the final layout a transistor model
and then determining whether the final design matches the gate-level netlist
and meets all the electrical and physical design rules. The introduction of a
block-level hierarchy to ensure that chip-level physical verification proceeds
swiftly requires that the block model be abstracted for hierarchical checking.

Test Integration
Generating a cost-effective set of manufacturing tests for an SOC device
requires a chip-level test architecture that is able to knit together the hetero-
geneous test solutions associated with each block. This includes a mechanism
for evaluating what the overall chip coverage is, the estimated time on the
tester, the pins dedicated for test mode, Test Access Protocol (TAP) logic and
conventions, collection methods for creating and verifying a final chip-level
test in the target tester environment, performance-level tests, procedures for
test screening, generation and comparator logic for self-test blocks, and unique
access for embedded memory and analog circuits. In addition, there are a num-
ber of manufacturing diagnostic tests that are used to isolate and analyze yield
enhancement and field failures.

Secure IP Merge
The techniques used for IP protection in the block authoring domain will
require methods and software for decoding the protection devices into the
actual layout data when integrating into the chip design. Whether these take
the form of keys that yield GDSII creation or are placeholders that allow full
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analysis prior to integration at the silicon vendor, the methodology will need
to support it.

Integration Platform
An integration platform is an architectural environment created to facilitate
the design reuse required to design and manufacture SOC applications and is
often tailored to specific applications in consumer markets. Chapter 3 discusses
integration platforms.

Integration Guide
The integration guide specifies the design methodology, assumptions, and
requirements of the chip integration process. It also covers the design styles,
including specific methodology-supported techniques, the tool environment,
and the overall architecture requirements of the chip design.

IP Portfolio
The IP portfolio is a collection of VCs, pre-staged and pre-characterized for a
particular integration architecture. An IP portfolio offers the integrator a small
set of choices targeted for the product application domain under design.

Software Development Links
The relationship between hardware and software IP can often be captured in
hardware/software duals, where the device driver and the device are delivered
as a preverified pair. By providing these links explicitly as part of the platform
IP, the integrator has less risk of error, resulting in more rapid integration results.

PCB Tools
The printed circuit board (PCB) tools must link to the chip integration process
in order to communicate the effects of the IC package, bonding leads/contacts,
and PCB to the appropriate IC design tools. Likewise, the effects of the IC
must be communicated to the PCB tools.

Software Development

Figure 2.5 provides a more detailed view of the software development process.
The role of each element is described below.
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Systems Analysis
Systems analysis is the process of determining the appropriate algorithm, archi-
tecture, design partitioning, and implementation resources necessary to create
a design that meets or exceeds the design specification. This process can lever-
age design tools and other forms of analysis, but is often based heavily upon
the experience and insight of the entire product team. The systems analysis of
the software and hardware can occur concurrently.

RTOS/Application Selection
In this design step, the software foundations to be used to create the design, if
any, are selected. The RTOS, the key application software, or other software
components can significantly influence the structure of the rest of the soft-
ware system. It needs to be selected early on, and might be part of the systems
analysis/performance simulation evaluation process.
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Partitioning
Partitioning determines the appropriate divisions between the functional ele-
ments of the design. These divisions are based on many factors, including per-
formance requirements, ease of design and implementation, resource allocation,
and cost. The partitions can be across hardware/software, hardware/hardware,
and software/software. Systems analysis and performance simulation can facil-
itate this step.

Interface Definition
Once the functional elements, or modules/blocks, have been partitioned, the
next step is to define the appropriate interfaces and interface dependencies
between the elements. This step facilitates parallel or independent development
and verification of the internal functions of the modules. This step can utilize
performance or behavioral simulation to validate the interface architecture.

Module Development
Module development is creating the internal logic of the partitioned elements.
The modules are created and verified independently against the design speci-
fication using many of the verification abstraction levels and design testbenches.

Software Integration
Software integration is the process of developing the top-level software modules
that connect the lower-level software modules and the appropriate links to the
hardware.

ROM/Software Distribution
Once the software component of the design has been completed and verified
independently as well as in conjunction with the hardware, it can be released to
production. This can take any variety of forms, from being written into a ROM
or EPROM for security reasons, to being downloaded to RAM or flash mem-
ory from a network, the Internet, or from disk media.

RTOS and Application Software
The RTOS and application software provide the software foundation on which
the software drivers and modules are built.
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Design Environment

An integration platform serves as the basic building block for efficient SOC
design. It is a pre-designed achitectural environment that facilitates reuse for
the design and manufacturing of SOC applications in consumer-driven mar-
kets. The next chapter provides an overview of the different levels of platforms
and how they are used depending on the target market.
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Integration Platforms
and SOC Design

The term platform in the context of electronic product design has been applied to
a wide variety of situations. There are hardware platforms, software platforms, PC
platforms, derivative product platforms, and standard interface platforms. We use
the term integration platform to describe the architectural environment created to
facilitate the reuse required for designing and manufacturing SOC applications in
a consumer-driven market. Reasonable projections estimate that in just a few years
we will need to achieve a reuse factor of greater than 96 percent to meet the pro-
ductivity objectives. To reach such a level without compromising effective use of
the silicon, reuse will be facilitated by application-specific and manufacturing-
technology focused platforms designed to create the virtual sockets into which the
reusable virtual components (VC) plug. The concept of an integration platform
applies broadly to the ideas presented in this book. This chapter provides a high-
level overview. For detailed discussions on designing and using integration plat-
forms, see Chapters 6 and 7.

Targeting Platforms to the Market

An integration platform includes hardware architecture, embedded software
architecture, design methodologies (authoring and integration), design
guidelines and modeling standards, VC characterization and support, and
design verification (hardware/software, hardware prototype). Because an
integration platform derives much of its productivity by focusing on a par-
ticular target application, it begins with a characterization of that target mar-
ket (for example, set-top boxes, digital cameras, wireless cell phones).
However, many of the structural elements of a platform are shared across
application domains.

3
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A design platform is developed to target a range of applications. The range is
a complex function involving several factors. These include the characteristics of
the target market, the business model for engaging that market, the differentia-
tion space the platform designer provides to the integrator, the time frame over
which the platform will be used, and the process technologies on which it is
implemented. Although most of these factors are well understood or explained
in this book, it is worth noting how the application and motivation for a plat-
form design varies depending on the business model used. The first row in
Figure 3.1 provides a partial list of target markets. The columns identify some of
the different business models that are involved in developing and manufacturing
an SOC device.

The Role of Business Models
A platform’s purpose and utility varies considerably when the perspective of a
business model is taken into account.

ASIC Manufacturing
The primary goal of an application specific integrated circuit (ASIC) semi-
conductor vendor is the efficient production of silicon at a high level of its
manufacturing capacity. An integration platform is a vehicle for the ASIC
vendor to collect together in a prestaged form an environment that provides
a significant differentiator beyond the traditional cost, technology, libraries,
and design services. As the platform is reused across the family of customers
in the target application market, the ASIC vendor sees direct benefits in
terms of better yield in the manufacturing process, greater leverage of the
VC content investment, a more consistent ASIC design handoff, and better
time-to-market (TTM) and time-to-volume (TTV) numbers. Because the
SOC consumer market is where rapid growth in high volume ASICs is pro-
jected, the ASIC providers were among the first to invest in platform-based
methodologies.
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System Product Manufacturing
The developer and manufacturer of the end product (that is, the cell phone,
digital camera, set-top box) is a system company for which the SOC is a com-
ponent in the final product. Because the SOC represents an increasing per-
centage of the product cost, value, and potential for derivative products, the
system product designer has to consider the integration platform as an essen-
tial element in the product’s life cycle. At a minimum, the system product
designer uses a platform-like approach to rapidly spin design derivatives as
required by the marketplace.

For instance, in the case of a digital camera, the development of an initial prod-
uct might take a year, but it is then followed by a series of derivative product vari-
ations that must be to market on a much shorter development cycle (for example,
two to four months or less). Failing to consider this in the initial design can sig-
nificantly limit market share. Concurrently, the product cost is often forced to
track a price erosion curve as competitors introduce newer products on more
aggressive technologies. The systems designer of a consumer product uses a plat-
form to respond to the market, to feature unique differentiating intellectual prop-
erty (IP), to control costs, to diversify the supply chain, and to move to
next-generation technology.

ASSP Providers
The application specific standard part (ASSP) provider designs IC chips (sub-
system level) to be shipped as packaged parts and used in end products. Success
in the market is often determined by the degree to which the ASSP is utilized
in high-volume system products. To insure that this happens, the ASSP designer
benefits significantly if the ASSP can be rapidly adapted to fit into high-volume
applications. These adaptations, sometimes called CSICs (customer-specific
integrated circuits), become increasingly more difficult as chip sizes and com-
plexities grow. For the ASSP designer, the platform becomes the base for reuse
to broaden the market opportunities for a part, while maintaining tight control
over the design.

IP Providers
Independent IP or VC providers seek to have their components integrated into
as many system and ASIC and CSIC platforms as possible. This means provid-
ing efficient interfaces to platform bus architectures as they emerge. It also
means adapting and versioning the VCs to address disparate market require-
ments, such as low power, high performance, cost sensitivity, high reliability, or
noise intolerance. The emergence of platforms for different application domains
enables the VC provider to focus on a precise set of requirements and interfaces
in pursuit of a particular market application.
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Design Service Providers
Design service providers use platforms as vehicles for capturing their unique
design methodologies and application domain differentiation. A platform rep-
resents the first codification of a new application domain and can be deployed
through a design service that meets the TTM demands of the system product
customer or positions the ASIC or ASSP provider to address new markets.
Further, the platform is a structure around which an application-tailored design
methodology can be fielded and reused. This methodology reuse is the basis
for the design service provider achieving a differentiation in productivity and
end-product design turnaround time, which can be leveraged across an appli-
cation domain customer base, such as 3G wireless or small office/home office
(SOHO) networks.

While the economic and competitive motivations among platform devel-
opers are varied, the fundamentals of platform design derive from a common
source and apply generally. Basically, the notion of design platforms has devel-
oped by evolving the reuse paradigm into the system design context. Several
new concepts emerge on the path from VC assembly to a more integration-
centric, platform-design approach, some of which are the following:

Adding software functionality along with software/hardware co-design and
co-verification methods. This can include real-time operating systems
(RTOS), drivers, algorithms, and so on.
Investing in prestaging and verification of component combinations to be
used as a fixed base for later incorporating into an SOC design. The
prestaging combines the most critical design elements, such as processors,
memories, analog/mixed signal (AMS) blocks, I/O structures, and
bus/power/clock/test architectures.
Codifying methods for assembling and verifying derivative products
coming from the design platform. This creates a focus on the integration
environment in terms of what can be done a priori and what appropriate
limiting assumptions can be made after evaluating the target-application
domain requirements.

Platform Levels

What emerges from this discussion of the purposes and uses of platforms is a col-
lection of architectural layers, which make up the building blocks useful for con-
structing platforms. Figure 3.2 depicts a hierarchy of layers that reflects the
development of integration platforms into fundamental technologies. Each layer
builds upon those below it. As you move up the chart, platforms become pro-
gressively more application-focused, more productive, and more manufacturing-
technology specific. While a variety of platforms could be defined within this
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layering hierarchy, three platform levels are currently emerging as economically
viable structures for investment.

The Foundation (Layer 0)
At the foundation, layer 0, the design methods for authoring blocks of IP (cus-
tom digital, AMS, standard cell digital), and integrating these blocks into a sys-
tem chip, generally apply to all application domains. Additionally, the
infrastructure environment for IP accessing, packaging, qualifying, supporting,
and migrating to new technologies applies across all platforms. Before any
effective design reuse environment can proceed, the foundation layer must be
in place and accompanied by an appropriate cultural climate for acquiring and
reusing design. However, this layer alone is insufficient for delivering significant
productivity improvements resulting from design reuse.

Level 1: The IC Integration Platform
The IC integration platform, which spans layers 0 and 1, is the most application-
general form of an integration platform that still delivers an observable improve-
ment in reuse productivity. Like an operating system, it serves as the base upon
which more application-focused platforms can be constructed. A typical level 1
platform consists of a set of programmable high-value hardware IP cores, which
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can be reused across a wide range of application sets, the RTOS for the proces-
sor(s), a system bus, a bridge to a peripheral bus, and an off-chip peripheral bus
interface. Models for the cores are available and included in the provided method-
ology for hardware/software design verification. Typically, one or more representa-
tive peripherals are hung onto the peripheral bus, and the rudimentary operations
among processors, memory, and peripheral(s) across the bus hierarchy are verified.

A level 1 integration platform can be applied to any application for which the
selected processors, memories, and bus structure are appropriate. It is expected
that during integration, application-specific IP will be integrated and adapted to
the bus architecture. The power architecture, functional re-verification environ-
ment, test architecture, clocking, I/O, mixed signal, software architecture, and
other integration elements are all defined during implementation, with changes
made to IP blocks as needed.

The advantage of an IC integration platform lies in its flexibility and the reuse
of the key infrastructural elements (processor, memories, and buses). The disad-
vantages lie in the adaptations required to use the platform to field a product, the
need to re-verify the external VC blocks being integrated, and the wide range
of variability in power, area, performance, and manufacturability characteristics
in the finished product.

Figure 3.3 illustrates an IC integration platform that could be applied to
many different applications in the wireless domain, from cellular phones to
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SOHOs. Characterizing the processors, memories, buses, and I/O infrastructure
provides a significant acceleration of any design in this space. However, to com-
plete the product design still requires significant effort.

Level 2: The System Integration Platform
The system integration platform, which incorporates layers 0 to 4, provides a
flexible environment for IP evaluation and exploration, system design, and rapid
implementation in a variable die-size manufacturing structure. It is a means for
end users to explore a variety of architectural alternatives and to integrate their
own hardware and software differentiating algorithms. It also provides a very
high degree of reuse in a predictable integration environment suitable for
consumer-driven product development cycles. This platform is significantly
more application-domain and process-technology specific than a level 1 plat-
form or standard ASIC, with the expectation that over 95 percent of the design
will be reused from the existing prestaged VC library without change. Primary
product differentiation in this environment is achieved through unique product
designer hardware blocks (analog or digital), software algorithms, and TTM.
Manufacturing cost can be improved over a gate-equivalent ASIC or a level 1
platform by taking advantage of the fact that over 95 percent of the design and
the key interconnect structures have been pre-characterized in silicon. Some of
the key characteristics of the system integration platform are:

Application-domain targeted
Integration architecture specification (bus, power, clock, test, I/O
architectures)
Substrate isolation for mixed signal, required IP blocks, block constraints
Full VC portfolio (prestaged, pre-characterized, pre-verified)
Proven, scripted Virtual Socket Interface (VSI)-compliantVC authoring
and integration methods
Design guides for block authoring (register-transfer level, AMS, design for
test, design for manufacturing)
Verification environment and models (might include a prototype)
Prototype characterization of integration architecture
Embedded software support architecture (RTOS, debuggers, co-verification
links/models, compilers, device drivers for peripherals, prototype emulation
system for high performance software/hardware simulation)

Figure 3.4 shows an example of a system integration platform that addresses
the DECT (Digital European Cordless Telephone) wireless market. This plat-
form builds on the IC integration platform in Figure 3.3 by adding VCs and
DECT-specific design content. It also includes a design infrastructure that is
unique to the DECT application, such as AMS VC authoring noise manage-
ment directives, manufacturing test techniques for the analog blocks,
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additional bus extensions, external processor interfaces, device drivers for smart
cards, and power management design techniques. This platform can still be
customized by adding more peripherals, unique IP in areas such as the radio
interface, cache size adjustments, software IP in the processors, and a host of
other potential differentiators. Furthermore, this platform can be delivered as
a predefined hardware prototype suitable for configuration with external field
programmable gate arrays (FPGA) into an early application software develop-
ment platform.

Level 3: The Manufacturing Integration Environment
The level 3 platform, which incorporates layers 0 to 5, represents a less flexi-
ble but more cost-effective and TTM-efficient vehicle for getting large SOC
designs to market. It is very application-specific and most suitable for product
markets and cycles where effective differentiation is achieved through cost,
software, programmable hardware, or memory size adjustments. The manu-
facturing integration platform provides the user with a fixed die, fixed hard-
ware development environment. The entire chip has been implemented,
except for the final programming of the FPGA blocks and the embedded soft-
ware in the processors. Some additional variability is achieved by using alter-
native implementations that include a different complement of memory and
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FPGA sizes. The chip is delivered as its own prototype. Given the nature of
many SOC products to be pin- or pad-limited, a wide set of variants on this
platform style can be conceived, including ones as simple as containing just a
processor, memories, and a large FPGA space all on a fixed die. However,
without a high percentage of VCs already on board, implemented and char-
acterized in an optimized fashion, and targeted at a specific application
domain, the simpler versions will often fail to achieve competitive system chip
cost, power, or performance objectives.

Perhaps the most significant advantage of this style of platform is seen in
terms of manufacturing cost. The same silicon master is applied in multiple
customer engagements, thus allowing significant manufacturing tuning for
yield and cost.

There are also more complex variants to this level, such as reconfigurable
computing engines with appropriately parameterized memories and I/O inter-
faces. Another unique approach is based on a deconfiguration technique, which
offers a complete set of hardware already pre-configured and characterized,
that enables the integrator to de-select chip elements and then program a new
design into either software or FPGA. The chip vendor has the option of ship-
ping the part in the original die (in the case of prototypes and early TTM small
volumes), or shrinking the part for high-volume orders.

Using this integration platform methodology, we will now look at the
systems-level entry point for SOC design—function architecture co-design.
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Function-Architecture
Co-Design

In this chapter, we take a "systems" approach to SOC design, using an integration
platform methodology. This systems approach, called function-architecture co-
design,1 is based on an emerging class of co-design methodologies that extend
beyond hardware-software co-design.2 Function-architecture co-design begins at
a level of design abstraction above that normally used in integrated circuit (IC)
design, which today starts at register-transfer level (RTL) on the hardware side, and
the C-code level on the software side. Instead, function-architecture co-design
begins with a purely functional model of the desired product behavior, and abstract
models of system architecture suitable for performance evaluation.

This chapter addresses why the function-architecture co-design approach is
important for SOC design in light of the inadequacies of today’s methodol-
ogy. It also looks at the integration platform concept, the reuse of virtual com-
ponents (VC) at a system level, and designing derivative products rapidly.

In terms of platform-based design (PBD), this chapter covers the tasks and
areas shaded in Figure 4.1.

Changing to a Systems Approach

Adopting a systems approach to SOC design brings up many key questions
and issues, such as:

What is the function-architecture co-design approach to SOC design?
Why do I need to change the current way of doing SOC design?

1. J. Rowson and A. Sangiovanni-Vincentelli, “Felix Initiative Pursues New Co-design Methodology,”
Electronic Engineering Times, June 15, 1998, pp. 50, 51, 74.

2. G. Martin, “HW-SW Co-Design: A Perspective,” EDA Vision, vol. 1, no. 1, October 1997, www.
dacafe.com/EDAVision/Issuel/EDAVision.1-3a.html.
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Why can’t I just evolve the way I do things today?
How do I break through the “silicon ceiling”?
What is the essence of this new methodology?
How do I model the intended product behavior?
How do I choose an appropriate SOC integration platform for my product?
How do I model VCs to enable system-level design trade-offs?
How do I improve the reusability of software VCs?
How do I partition functions between hardware and software?
How do I determine the correct on-chip communications and add
architectural detail?
How do I know that my system has the right performance?
How do I choose the architectural components?
How do I decide on processors without implementing a lot of software?
How can I be sure that the communication and busing architecture is adequate?
How do I reuse information and decisions made at the system level?
How do I model integration platforms at the system level?
How do I quickly design a derivative SOC device from an integration
platform?

This chapter addresses each of these questions in the following sections.
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Function-Architecture Co-Design

Figure 4.2 illustrates the main phases of function-architecture co-design when
applied to embedded hardware-software systems.

Functional Modeling
In this phase the product requirements are established, and a verified specifica-
tion of the system’s function or behavior is produced. The specification can be
executable, and it can also link to an executable specification of the environ-
ment within which the system will be embedded as a product. For example, a
cellular handset might use a verification environment for a wireless standard
such as GSM or IS-95 (CDMA). Functional exploration includes function and
algorithm design and verification, probably simulation-based. The environ-
mental executable specification can be considered a virtual testbench that can
be applied to system-level design, as well as provide a verification testbench for
implementing phases of the SOC design later.

Architecture Modeling
Once a functional specification for a product has been developed, a candidate
architecture or family of architectures on which the system functionality will
be realized is defined. Hardware/software architectures include a variety of
components, such as microprocessors and microcontrollers, digital signal
processors (DSP), buses, memory components, peripherals, real-time operat-
ing systems (RTOS), and dedicated hardware processing units (for example,
MPEG audio and video decoders). Such components can be reused VC blocks,
whether in-house, third-party, or yet-to-be-designed blocks. The system func-
tional specification is decomposed and mapped onto the architectural blocks.
Possibilities for component blocks include reconfigurable hardware blocks that
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are one-time, dynamic, with long reconfiguration latency, or dynamic with a
short enough reconfiguration latency for the block to offer multiple function
modes with considerable area efficiency.

Mapping and Analysis
This process maps, or partitions, the functional model onto the architecture
model by assigning every function to a specific hardware or software resource:
for hardware, as a dedicated hardware block (or one mode of a dedicated hard-
ware block); for software, as a task running on a general or specialized proces-
sor. Embedded systems that contain several processors offer several choices for
mapping particular software functions. They require at minimum a basic task
scheduler, up to a complete RTOS, to mediate access to each processor
resource. Although manual mapping can adequately deal with many systems,
research into automated mapping algorithms might lead to methods that will
be key to finding optimal mappings for the very complex embedded systems of
the future.

After mapping, various kinds of performance analysis are possible, which
might lead to experiments involving alternative architectures or alternative
choices of VCs before an optimal architecture and mapping are found. A cer-
tain amount of architectural refinement can also be carried out prior to pro-
ceeding to the implementation phases.

Software and Hardware Implementation
This phase involves designing new hardware blocks, integrating reused hard-
ware VC blocks, and developing software. Typical IC design today begins at
this level of abstraction, often called the “RTL-C” level.

System Integration
With developed software and hardware, at least in prototype form, the complete
system can be assembled for lab trials. Product integration might include emu-
lators or rapid prototypes for hardware functions.

The SOC Design Process Today

Today, most system-level design of embedded SOC devices is based on giving
a written specification for a product to an architectural guru, who then carries
out a manual partitioning into chips or chipsets, writes a preliminary specifi-
cation for the devices, and throws it to a chip development team. The team
starts with RTL-coding and implements the chip using existing design flows,
both logical (synthesis-based) and physical (floor planning-based). Behavioral
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modeling, often using C/C++, algorithm tools, and behavioral VHDL, is
employed to some extent, with a limited degree of success, to work out the
basic structure and partitioning of the system. Generally, however, such mod-
els are not shared between system architects and implementation teams.

In parallel, and often with poor or non-existent communication between
the development teams, a software team develops code using their version of
the specification. At integration time, hardware and software are brought
together and iterated until they pass a verification test suite that is usually not
comprehensive enough to guarantee type approval or product acceptance. This
product development flow makes it a challenge to meet time-to-market
(TTM) requirements.

Changing the Approach to SOC Design
Today’s methodologies are largely geared toward authoring blocks on a low
level subsystem basis, not integrating VCs into full SOCs. System-chip archi-
tectures captured at the RTL-C level are hard to reuse and evolve. At RTL,
architectures must be fully articulated or elaborated, with all signals instanti-
ated on all blocks, all block pins defined, and a full on-chip clocking and test
scheme defined. Since architectural designs at RTL have completely defined
communications mechanisms, it is difficult and time-consuming to change the
on-chip control structures and communications mechanisms between blocks.
It is also difficult to substitute VCs. Dropping in a new microcontroller core
requires ripping up and re-routing to link the block to the communications
structure.

In addition, designs captured at RTL mix both behavioral and architectural
design together. Often the only model of VC function is the synthesizable RTL
code that represents the implementation of the function. Similarly, the only
model of a software function might be the C or assembly language implemen-
tation of the function. This intertwining of behavior and architectural compo-
nents makes it difficult to evolve the behavior of the design and its architectural
implementation separately. If a design needs to conform to a particular
standard that is evolving, or needs to be modified to conform to the next gen-
eration of a standard, the RTL-C level design is a clumsy and difficult repre-
sentation to work with.

Verification of embedded hardware-software designs at RTL is difficult,
which is further compounded by having embedded products with a significant
software component. At RTL, co-verification with today’s ad hoc and emerg-
ing commercial tools is slow.3 Complete system application behavior in a hard-
ware description language (HDL)/C simulation environment cannot be

3. ibid.; and J. Rowson, “Virtual Prototyping,” CICC 1997, May 1997, pp. 89-94.
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verified. Co-simulation tools and strategies are still immature, constrained, and
very slow (compared to system-level needs and algorithmic simulation at the
system level). Rapid prototyping mechanisms, such as field programmable gate
array (FPGA) and hard core-based, provide verification alternatives, but they
generally require more complete software implementation or a concentration
on specific algorithms.

During such co-simulation, if major application problems are found, a time-
consuming and tedious redesign process is required to repair the design.
Repartitioning is very difficult, since it causes the communications infrastruc-
ture to be redesigned. Substituting better programmable hardware VCs (new
processors, controllers) or custom hardware accelerators for part of the soft-
ware implementation requires significant changes to application software.

Why Today's Methods Do Not Work
As today’s RTL tools and methodologies evolve, we will see more up-front sys-
tem and chip design planning, better forward prediction of physical effects of
layout (so that these effects can be incorporated into up-front design planning),
and more robust hardware-software co-verification.

RTL, top-down floor planning is emerging. RTL floor planning offers bet-
ter control over the physical effects determined during the synthesis process,
and enables the number of iterations required to converge on a feasible design
to be reduced. However, not all VC blocks will be reused at RTL. Reusing
hard (essentially, laid out in an IC process) and firm (cell-level netlists) blocks
will increase, and vendors of large complex programmable VC cores might
prefer distributing these formats to their customers rather than synthesizable,
soft RTL code.

VC block authoring is also becoming a better defined process as the Virtual
Socket Interface (VSI) Alliance develops a VC block interchange standard cov-
ering the soft, firm, and hard domains from RTL down through physical layout.

However, such an evolution of methodology does not change the fact that
architectures will still be hard to reuse and evolve. It will still be difficult to
explore VC block alternatives, especially programmable ones. Verifying that an
architecture and design work will still pose considerable difficulties. The behav-
ior and architectural implementation for a design will still be intertwined and
difficult to evolve separately.

This evolution also does not account for changing deep submicron
(DSM) process technologies. Migrating design architectures to a new DSM-
technology level requires porting the hard blocks to the new technology,
which might not scale adequately for the required new applications for a
derivative design, mapping firm blocks to new cell libraries optimized for
the new process, and resynthesizing and re-characterizing soft blocks. The
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ported architecture and design might not meet the new derivative perfor-
mance, cost, and power requirements, thereby requiring a significant redesign
effort. DSM process migration for an integration platform might be better
accomplished by taking a systems approach to evolving the process and mak-
ing trade-offs and repartitioning decisions.

Adopting a New Methodology

Providing solutions for the limitations in today’s methodology and tools
requires moving away from concentrating on chip-level design at RTL-C level
(referred to as the “silicon ceiling”),4 that is, shifting from a methodology
emphasizing VC authoring to one that emphasizes VC integration.

Breaking through the Silicon Ceiling
Breaking through the silicon ceiling requires higher levels of design abstrac-
tion in three key areas: architectures, models, and design exploration and
verification.

Architectural abstractions must be easy to capture, evolve, and change, which
means removing details that are not necessary for first- and second-order archi-
tectural exploration and evaluation. Abstract architectures are ideally suited to
describing SOC integration platforms.

Architectural and VC choices cannot be explored with detailed cycle- and
pin-accurate simulation models, because they are too slow to execute and
too difficult to manipulate during design exploration. Articulated HDL-based
signal and event-driven simulation, whether just used for hardware valida-
tion or as part of hardware-software co-verification, is also too slow to vali-
date system-level behavior for embedded system-chip designs, or to explore
architectural and VC alternatives. Instead, the appropriate abstraction level is
to use performance analysis techniques to make first- and second-order archi-
tectural trade-offs. This matches the shift to a methodology centered on VC
integration.

In addition, it is important to have a methodology that allows the system
behavior to be repackaged or exported in an executable form to the lower lev-
els of the design implementation process. This supports VC authoring (it can be
used to verify new VCs that are part of the overall SOC device in the context
of the intended system function as captured in an executable verification
model), VC integration, and detailed design.

4. G. Martin, “Design Methodologies for System Level IP,” Proceedings of Design Automation and Test in Europe,
February 1998, pp. 286-289.
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Breaking through the silicon ceiling also requires that RTL designers adopt
a methodology and tool technology that supports:

Easy, rapid, low-risk architecture derivative design based on standard
integration platforms
Reduced risk for developing complex product designs: system designers
must be able to develop key concepts at an abstract level and have them
rapidly implemented with little risk of architectural infeasibility
Abstract models that are easy to generate
First-order trade-offs and architectural and VC evaluations above RTL
Hardware-software co-design and co-verification at a higher level
On-chip communications schemes that are easy to create and modify, and
the ability to hook up and change the interface of VC blocks to those
mechanisms
Linkages to hardware and software implementation flows
Methods for parallel evolution of platforms as a function of process
technology evolution to ensure that the latest technology is available

The Essence of This New Methodology
To maximize reuse and to take advantage of derivative designs, we need a new
methodology to do the following (see Figure 4.3):

Capture and iterate heterogeneous system behavior, both dataflow and control
Compose behaviors by linking them with discrete event semantics
Capture a minimal or relaxed product architecture
Manually map the behavior to the architecture
Annotate the behavior with architectural performance effects in terms of
speed, power, and cost, using architectural estimation models
Carry out a performance analysis of the behavior on the architecture and
iterate
Refine the architecture to an implementable hardware-software
that can be passed to hardware and software implementation flows

Putting the New Methodology into Practice

The following section provides a methodology for creating derivative designs.

Modeling the Intended Product Behavior
The system designer captures and verifies the functional behavior of the entire
system at a pure behavioral level. This is based heavily on reusing behavioral
libraries and algorithmic fragments, importing language-based models of behav-
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ior, and creating co-design finite state machine (CFSM) models.5 The verifica-
tion occurs within an implementation-independent environment; that is, no
architectural effects are incorporated into the functional behavior at this point.

A target architecture is devised and captured, which is based on reusing
architectural VC elements, such as DSP cores, microcontrollers, buses, and
RTOSs. Architectures are captured in a relaxed mode, without wiring detail.

Choosing an Appropriate SOC Integration Platform
Target architectures are the mechanism for describing domain-specific inte-
gration platforms. Target architectures can be provided as integration platform
definitions rather than starting from scratch. In this case, the designer starts with
a platform and a target application and explores the space of architectural mod-
ifications that are possible using the platform’s VC portfolio.

Modeling VCs to Enable System-Level Design Trade-offs
First-order architectural trade-offs do not need fully articulated architectures to
be captured. A “relaxed” view of the system-chip architecture is sufficient. In
this relaxed view, VC function blocks are instantiated with simple connections
to abstract views of communications mechanisms. At the highest level of

5. F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, C. Passerone, A. Sangiovanni-
Vincentelli, E. Sentovich, K. Suzuki, and B. Tabbara, Hardware-Software Co-Design of Embedded Systems, Kluwer
Academic Publishers, Dordrecht, The Netherlands, 1997.
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abstraction, communications can be described as moving frames, packets, or
tokens between function blocks over channels. Below that, communications
abstraction is seen as a series of basic bus-transactions or software communi-
cations methods.6

The VC function blocks can be classed into several categories: processors
(control-dominated or signal processing-dominated), custom function blocks (for
example, MPEG decoders, filter blocks), memories, peripheral controllers, buses,
etc.7 These VC function blocks process tokens, frames, packets, or step through
control and computational sequences under software control. The basic system
operation can be described by how fast blocks process tokens or run software, and
how blocks transfer tokens to each other over communications mechanisms.

The abstract VC models should be a combination of architectural delay
equations, appropriate for the class of VC block, and resource contention mod-
els for shared resources, such as buses and processors.

Improving the Reusability of Software VCs
Software code is reusable if it can be easily retargeted. There are two kinds of
software VCs:

Close-to-hardware, consisting of RTOSs, drivers, and hardware-dependent
code that is optimized for particular hardware platforms. This software is
often written in assembly code and inherently hard to retarget.
Hardware-independent, usually written in C with adequate performance
when kept as hardware-independent. Retargeting requires an assurance
that the software will perform adequately on new target hardware.
Techniques currently exist (based on extensions to the software estimation
work in POLIS)8 that enable this assurance to be derived by estimating
software performance automatically on target hardware.

To ensure software reusability, VC developers should write hardware-
portable code using APIs, compiler directives, and switches to invoke various
hardware-specific functions or code.

Partitioning Functions between Hardware and Software
Behavioral functions and communications arcs are manually mapped to the archi-
tectural resources, and the system is evaluated using a performance analysis of

6.J. Rowson and A. Sangiovanni-Vincentelli, “Interface-based Design,” Proceedings of the Design Automation

Conference, 1997, pp. 178-183.
7. G. Martin, “Moving IP to the System Level: What Will it Take?,” Proceedings of the Embedded Systems

Conference, 1998, Volume 4, pp. 243-256.
8. F. Balarin, H. Hsieh, A. Jurecska, L. Lavagno, and A. Sangiovanni-Vincentelli, “Formal Verification of

Embedded Systems Based on CFSM Networks,” Design Automation Conference, 1996.
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speed, power, and cost. Pre-existing architectures and mappings can provide start-
ing points for this phase. The process of mapping establishes a set of relationships
between the application behaviors and the architecture on which that behavior
will be realized.When several behavioral blocks are mapped onto a programma-
ble VC block, such as a microprocessor, controller, or DSP, it is assumed that these
behaviors are intended to be implemented as software tasks running on the
processor. This might involve at minimum a simple scheduler, or a commercial or
proprietary RTOS.When a behavioral block is mapped onto a dedicated hard-
ware unit on a one-for-one basis, we can assume that the hardware block imple-
ments that behavior in hardware (see Figure 4.4 as an example of this).

Where there is no existing architectural resource on which to map a behav-
ioral function, or where available resources from VC libraries are inadequate in
performance, cost, power consumption, and so on, the system behavioral
requirements and constraints constitute a specification for a new architectural
resource. This can then be passed, along with the behavioral model and the
overall system model, to an implementation team to design new VCs accord-
ing to this specification. Alternatively, trade-offs can be made as far back as the
product specification to reach the appropriate TTM—the need for the new
function is traded with the extra design time required.
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Determining the Correct On-Chip Communications
When a communications arc is mapped onto a communications resource on a
one-for-one basis, usually there is no contention for the resource.When several
communications arcs are mapped onto a communications resource, the
resource is shared and, thus, contended for. Communications mapping starts at
a very high level of token-based communications abstraction, which is later
refined to add detail.

The architecture, behavior, and mapping are iterated and analyzed until the
most optimal architecture is established. The target architecture is refined into
a detailed micro-architecture that is implementable in both hardware and soft-
ware domains. For example, memories are mapped onto actual implementa-
tions, detailed communications interface blocks are chosen using generic bus
transactions, and glue-control hardware is defined, possibly as CFSMs. The
refined target architecture is passed to subsequent processes for hardware and
software implementation.

For new VC blocks, or for existing VC libraries that do not meet system
requirements for some behavioral functions, the results of detailed implemen-
tation can be abstracted and back-annotated into the system model to ensure
that block implementations still work within the overall system application
behavior. Any changes that could affect the behavior are verified within the
original verification environment or executable system model.

Determining the Right Performance
After mapping, the architecture’s performance in running the application must
be analyzed or compared with alternative architectures. In this methodology, a
performance analysis simulation is carried out by re-running the behavioral
simulation annotated with information derived from architectural estimation
models (delay equations), which represent the performance effects of the archi-
tecture under study.

The netlists representing the behavior and architecture, and the mapping
between them, are combined with delay equations and resource models
extracted from architectural component libraries to regenerate a behavioral
composition netlist, with annotations representing delay equations and resources.

The behavioral simulation is then re-run in native mode, processing test-
bench traffic, while keeping track of the performance effects of the architecture
(the delay equations and resource contentions) via instrumentation on the sim-
ulation. This simulation, which keeps track of cycle counts, is called cycle-
approximate functional simulation.

The output of this instrumented simulation can then be analyzed via a num-
ber of visualization tools. Architectural changes can be evaluated to find the
optimal architecture for the application.
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Choosing the Architectural Components
Each architectural component has an appropriate mechanism for creating delay
equations and for evaluating performance effects. These components become
part of the VC portfolio provided with the integration platform. The portfo-
lio of VCs is used to explore the mapping space. Architectural resources can be
divided into several different classes:

Estimatable processors Software tasks mapped to estimatable processors, such
as microcontrollers, RISC, and CISC, wait to get access via the RTOS
scheduling policy, estimate performance based on characterized estimation
function coefficients, and then release the processor. This is especially
suited for control-oriented code, which has high input-data dependency.
The estimation procedure is further described in the next section.

Non-estimatable processors These processors are modeled using a series of
DSP kernel functions that are pre-characterized on the DSP through
analysis or through running assembly or C code for the kernels on the
processor, which are then used to derive an equation-based model. During
performance simulation, the software functions running on the DSP are
mapped into an appropriate set of kernel equations. Contention for the
DSP is also modeled via an RTOS or simple scheduler model. This is
especially suited for dataflow-oriented code that has predictable latency
and relatively high data independence in the flow or processing.

Software tasks If multiple behavioral blocks are mapped to a single task,
they will be statically scheduled, and communications within the task avoid
RTOS overhead.

Buses Buses are modeled through a set of basic bus transactions (for example,
write, burst-write, read, burst-read), which are characterized individually via
delay equations. In addition, contention for the bus is modeled as a resource.
Behavioral communications arcs that are mapped to specific sets of bus
transactions also have a set of transactions they can perform.

Memory Simple models for memories represent wait states as delays.
Software will both execute out of memory and use it for data store and
access. Memory hierarchy via cache mechanisms can be modeled
stochastically or via more sophisticated resource models. Software
estimation techniques factor necessary memory accesses into them. Both
Harvard and non-Harvard memory architectures can be modeled.

Hardware Existing blocks have performance delay equations for processing
tokens, frames, packets; new custom hardware blocks have either constraints
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or back-annotated delay numbers derived from implementation. These
delay equations can represent dedicated function block performance,
whether realized through custom digital design, application-specific IC
(ASIC) styles (for example, standard cell synthesis, placement, and routing),
embedded FPGA blocks, or even the use of newer approaches, such as
dynamically reconfigurable hardware.

RTOS Each RTOS or variant, whether commercial or proprietary, should
have a dynamic resource model for scheduling policy, interrupt service, and
context-switching latencies.

Using Processors without Implementing a Lot of Software
The technique used for estimating the performance of software running on a
target processor or microcontroller core is based on two key steps. First, the
processor is characterized once, and a table of coefficients is created, as shown
in Table 4.1, and placed in the library. These coefficients give cycle counts for
a basic set of generic or atomic operators, which are common across all proces-
sors and controllers for a class of applications. The generic or atomic operators
map into actual processor instructions.

Next, the C code is analyzed and decomposed into the generic atomic oper-
ators, which are annotated with delay coefficients from the table. Processor
register resources are used to estimate variable storage in registers versus mem-
ory accesses. During performance analysis simulation, the actual software code
is run natively on the workstation and accumulates delay information based on
counting the cycles that would have been consumed on the target processor.
Statistical and scaling techniques model cache and pipelining effects.
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Some code might have hybrid characteristics: data dependencies in some
portions, and data independence in others. Several hybrid estimation schemes
can be used, depending on the granularity of the mix of control and dataflow.
For example, either of these methods, or a combination of them, can be used:

If control and dataflow code is mixed within the tasks at a fine-grained level,
the control software estimation method can be used for the major control
flow. If the code then calls pre-characterized DSP kernel functions, a statically
or parametrically driven model for the kernel function latency can be used.
If control and dataflow processing exhibit task-wise granularity, one RTOS
scheduling model can be used to mediate access to the processor, but either
the DSP kernel function modeling method, or the control software
estimation method, can be used on each task depending on its dominant type.

Communication and Busing Architecture
Communication refinement is the process of mapping communication arcs in the
behavioral hierarchy to architectural resources and decomposing the resulting
communication blocks down to the pin-accurate level. Arcs connecting behavioral
blocks mapped to the same software processor are only decomposed down to the
RTOS interface level. If, within the architecture specification, standard hardware
components or a standard RTOS are selected, these selections constrain the
decomposition process on the behavioral side to match the actual interfaces within
the architecture. This approach is known as interface-based design.9

At this level, the mapped behavior is extended to model the communication
mechanisms within the system architecture. For two communicating behav-
ioral blocks mapped to hardware (hardware to hardware), the modeling is done
at the generic bus transaction level. For example, the user sees transactions such
as write(501), read(), burst_write(53,…), irq(l,5).The token types transmitted
are those directly supported by the hardware bus. Transactions are modeled as
atomic units and have no signals or internal timing structure. The actual signals
of the bus are not modeled, nor things like bi-directional ports or tristate dri-
vers. Shared resources within the implementation (processors, busses, etc.) are
modeled abstractly via a shared-resource model and are instantiated by the per-
formance simulation interpretation of the delay equations.

Software to hardware or hardware to software communication is also mod-
eled at the same bus transaction level. The refinement on the software side
reflects the chosen RTOS’s device drivers. Modeling software to software com-
munication at this level also occurs when the two software behaviors are
mapped to different processors.

9. Alberto L. Sangiovanni-Vincentelli, Patrick C. McGeer, and Alexander Saldanha, “Verification of
Electronic Systems,” Proceedings of the Design Automation Conference, June 1996, pp. 106-111; and Rowson and
Sangiovanni-Vincentelli, “Interface-based Design.”
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For software to software communication, if the two software behaviors are
mapped to the same processor, the communication interface is modeled with the
RTOS, since it is not necessary to model at a lower level of abstraction. The
transaction types in this case might be wait(), read(), lock(), unlock(), emit().

This refined behavior modeling reflects the lowest communication abstrac-
tion level that can be modeled and simulated. Every mapped communication
arc must be modeled at this level before it can be exported from the methodol-
ogy. For this reason, all communication resources in the system architecture
(buses, RTOSs, interfaces, etc.) must provide a model at this level of abstraction.

Additional abstraction levels are possible between the mapped behavior and
the refined behavior levels. Modeling at these levels is optional, and models for
these levels might or might not be available.

Performance analysis of communications traffic at the system level, down to
generic bus transactions, provides useful block to block latency and bandwidth
requirements that can be used later to determine the detailed bus structures
and arbitration schemes when implementing the platform and derivative
designs. After implementation, more accurate bus latency and throughput char-
acteristics can be back-annotated into the system-level models. This can be
used to explore architectural alternatives and to improve the fidelity of the plat-
form system models for subsequent derivatives.

Reusing Decisions Made at the System Level
This methodology produces an implementable hardware and software descrip-
tion. The hardware description is passed to an RTL floor planner and to a cycle
and pin-accurate HDL verification environment. The hardware description
consists of:

A top-level HDL file with references to all the VC blocks, wired together
with full pin-accurate wiring (for example, all signals referenced), including
I/O pads, test buses, self-test structures, and parameters for parameterized
VC blocks.
Synthesizable RTL HDL blocks (invoked from the top level) where
communications structures have been chosen in the refinement process, or
in the software code that implements the communications structure (for
example, a bus interface), along with appropriate performance constraints.
An assumption check testbench that helps validate at the cycle-accurate
level the assumptions made at the performance analysis level, which
include each library delay equation, the tool’s delay calculations where
library equations do not exist, each communication mechanism between
blocks, the RTOS and/or bus arbitration operation, a function behavior
and performance (marked by the user) when the function operation is
highly data dependent, and the memory size (data and code).
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The software description consists of:

Each software implementation described as a memory image, with specific
physical memory location, size, and load address.
A memory map with no overlaps, including a fully defined interrupt vector
and direct memory access trigger table.
A skeleton of the overall software structure, including initialization code
where available, and calls to major RTOS setup routines.

As mentioned above, the communications bandwidth and latency require-
ments can be directly passed to a detailed design of on-chip buses.

Using the Integration Platform Approach

The integration platform approach enables a chip architecture to be reused as
a whole if it is supported by an efficient system-level design methodology, such
as function-architecture co-design.

Modeling Integration Platforms at the System Level
To model integration platforms at the system level, architectures must have the
following characteristics:

Simple to capture and modify, that is in a relaxed form rather than a fully
articulated form.
Include rich libraries of architectural VC components from internal and
third-party VC providers.
Supported by central architecture groups and third-party suppliers who
create architectural derivative product design kits containing reference
architectures, VC block libraries, and sample applications.
System control and communications that are easy to modify by using
abstract communications descriptions and refinement mechanisms.
Easy to export to implementers of architectural derivatives. It must be
possible to link architectural design to real hardware and software
implementation flows, so that design information captured at the
architectural level is usable at subsequent design process stages.

Designing a Derivative SOC Device
from an Integration Platform
In today’s embedded consumer communications and multimedia products,
original architectures created on a blank sheet are relatively rare. However, a
base or platform architecture is often used to create a whole series or family of
derivative products. Derivative designs can rely on the same basic processor
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cores and communications buses, but they can also be varied in the following
ways:

Change peripherals depending on the application
Add optional accelerating hardware
Move hardware design into software, relying on new, faster embedded
processor cores or parallel architectures (for example, very long instruction
word (VLIW) architectures)
Limited VC block substitution (for example, moving to a new microcontroller
core which, via subsetting, is instruction-set compatible with the old core)
Significantly change software, tailoring a global product for particular
markets or adding special user interface capabilities

Sometimes a derivative design is only possible if the whole integration plat-
form on which it is based is moved to a new DSM process that provides greater
performance, lower power, or greater integration possibilities.

Ideally, system designers would be supplied with an application-oriented
architectural template toolkit, that is an integration platform, for constructing
derivative SOC designs. This toolkit, which defines a virtual system design,
would contain the following:

A template architecture or architectural variants, including basic processing
blocks, SOC on-chip and off-chip communications buses, basic
peripherals, and control blocks.
An application behavior, along with a verification environment or testbench.
A “starter” mapping of behavior to architecture.
Libraries of behavioral and architectural components that could be used to
create a derivative architecture for a modified behavior.
Composition and refinement rules and generators that would keep system
designers in the feasible derivative space.

In this template toolkit, system designers might want to modify the applica-
tion behavior for a particular design domain, for example, to incorporate a new
standard. Behavioral libraries, which are regularly updated, should include new
standards-driven blocks as standards emerge or evolve.

Also, the current template architecture might not meet the system con-
straints with the new behavior, and a new architectural VC component might
need to be added. The architectural VC component libraries should be regu-
larly updated to include new function blocks, new controllers, and so on.

The mapping of behavior to architecture should be modified to incorporate
the new components and the performance analysis redone to validate system
conformance.

Using the refinement rules and generators supplied by the central architecture/
VC group, a new set of implementation deliverables can be generated and passed
to an implementation group.
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What's Next?

Several key factors are important for this new methodology to succeed:

The availability of VCs that can be incorporated into integration platforms
and used to construct derivative designs based on this system-level trade-
off methodology. These VCs need to have the appropriate abstract system
models. Existing and emerging VCs need to be modeled, and the models
made available to a wide user community.
Appropriate interface-based design models at all levels of the design
hierarchy need to be used, since this approach promotes a modular
development strategy where each architectural VC is developed, tested,
verified, and pre-characterized independently.
Organizations must develop internal structures to ensure effective VC
management, information sharing, central or distributed VC databases to
allow VCs to be found, and careful planning to avoid redundancy in VC
development and to promote wide reuse.
Careful VC database and design management so that the impact of VC
revisions on past, current, and new designs can be carefully assessed prior to
checking in the new versions. This will also help identify a VC
development and procurement program for a central organization.

Moving beyond today’s RTL-based methodology for system-chip design
requires a new reuse-driven methodology and the provision of tools and tech-
nologies that support it. Function-architecture co-design provides solutions to
taking a systems approach to SOC design.

(Continued on next page.)
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Designing Communications
Networks

Modern, complex electronic system designs are partitioned into subblocks or sub-
systems for various reasons: to manage the complexity; to divide the system into
complete functions that can operate independently, thus simplifying interblock
communications and allowing for parallel operation of subfunctions within the
system; to minimize the interconnect or pins for each subblock for ease of block
assembly; or to specify subsystems in a way that enables using standard blocks or
previously designed subfunctions. Complex systems require the successive refine-
ment of models from the very abstract algorithmic level down to a partitioned
block-based architecture.

The partitioned system must then be reassembled with the appropriate com-
munications network and information exchange protocols so that the overall
system functionality and performance requirements can be met. The commu-
nications must also be modeled as a successive refinement, leading to a set of
transactions. The function-architecture co-design methodology introduced in
the previous chapter does this refinement. We will now discuss the implemen-
tation of bus architectures starting at the transaction level.

This chapter describes the fundamentals of bus architecture and techniques
for analyzing the system-level communication of a design and applying it to
the bus creation in a block-based chip-level design. It begins with definitions
and descriptions of key communication components followed by design
methodology. It includes a detailed discussion on adapting communications
designs to a platform-based paradigm. Engineering trade-offs and a look at the
future of on-chip communications is also addressed.

In terms of the platform-based design (PBD) methodology introduced ear-
lier, this chapter discusses the tasks and areas shaded in Figure 5.1.

5
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Overview of System Chip Communications

The communications network provides for the sharing of information between
functions and for the transmission of data and control information between
individual functions and with the outside world. This communications net-
work can be viewed as having both physical and logical entities. The physical
view consists of a hierarchical network of elements, such as bus structures, ports,
arbiters, bridges. The logical view contains a hierarchical set of information
exchange protocols.

Before introducing a methodology for designing communications networks,
this section defines and describes the important elements and concepts in sys-
tem chip communications.

Communication Layers
Generally, system chip communications can be divided into hierarchical lay-
ers. The lowest layer includes the physical wires and drivers necessary to cre-
ate the network. At this layer, the physical timing of information transfer is
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of key importance. At the next layer, the logical function of the communi-
cations network is defined. This level includes details on the protocol to
transfer data between subcomponents or virtual components (VC). These
first two layers deal with the specific implementation details. The top-most
layer, or applications layer, describes interactions between components or
VCs. This layer does not define how the data is transferred, only that it
gets there. Therefore, a third layer is needed to bridge the lower implemen-
tation layers and the upper application layer. This third layer is the transac-
tion layer. A transaction is a request or transfer of information issued by one
system function to another over a communications network. In this layer,
transactions are point-to-point transfers, without regard to error conditions
or protocols.

The transaction layer is key to understanding and modeling VC to VC com-
munications, because it is removed from the bus-specific details but is at a low
enough level to transfer and receive data in a meaningful way from VCs. The
transaction layer corresponds to the lowest level of communications refinement
in systems design, as discussed in the previous chapter. The VC interface should
be defined as close to the transaction level as possible.

The transaction layer can be further subdivided into two levels: the higher
level dealing with abstract transactions between modules, and the lower one
dealing with transactions closer to the hardware level. The higher level consists
of reads or writes to logical addresses or devices. These reads and writes con-
tain as much data as is appropriate to transfer, regardless of the natural limits of
the physical implementation. A lower level transfer is generally limited by the
implementation, and contains specific addressing information.
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Buses
Buses are a way to communicate between blocks within a design. In the sim-
plest form, buses are a group of point-to-point connections (wires) connecting
multiple blocks together to allow the transfer of information between any of
the connected blocks. Some blocks might require the transfer of information
on every clock cycle, but most blocks within a system need information from
other blocks only periodically. Buses reduce the amount of pins needed to
communicate between many different units within the system, with little loss
in performance.

To partition a system into subfunctions, logic must be added to each of the
blocks to keep track of who gets to use the bus wires, when is the data for this
block, when should the sender send the data, did the receiver get the data, etc.
The bus also requires control signals and a protocol for communicating
between the blocks.

There are many different ways to create a bus protocol. In the simplest case,
one device controls the bus. All information or data flows through this device.
It determines which function sends or receives data, and allows communica-
tions to occur one at a time. This approach requires relatively little logic, but
does not use the bus wires efficiently and is not very flexible. Another approach
is for all the communications information to be stored with the data in a
packet. In this case, any block can send data to any other block at any time.
This is much more flexible and uses the bus wires more efficiently, but requires
a lot of logic at each block to determine when to send packets and decipher the
packets being received. The former example is traditionally called a peripheral
bus, and the latter is called a packet network.

Bus Components
The initiator, target, master, slave, and arbiter bus interface functions are types
of communications processes between subfunctions or VCs. Bridges are used to
communicate between buses.
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An initiator is a VC that initiates transactions. It defines the device and
address it wishes to access, sends the request for the transaction to the bus, gets
a grant from the bus arbiter, and responds to any error that might occur. A tar-
get is a VC that only responds to transaction requests; it never initiates requests
or transactions.

A master and initiator are often interchangeable, but we are differentiating
between an initiator as the component on the bus, and a master as an inter-
face. A master then is the initiator side of the VC interface. Similarly, a slave is
the target side of the VC interface.

An arbiter controls the access to the bus. All requests must be directed to the
bus arbiter, which then arbitrates the sequence of access to the bus by the VCs.

A bridge connects two buses together. It acts like an initiator on one side of
the bridge and a target on the other. Bridges can have intermediate storage to
capture part of or the entire transfer of information before passing it on to the
next bus. Bridges can also change from one size bus to another.

The arbiter decides to which initiator to grant the bus. This is important when
multiple initiators exist on a bus. Each can initiate transfers of data, but if more
than one wants to initiate a transfer, the arbiter decides which one gets the bus
first. As shown in Figure 5.3, arbitration can be done in different ways. With a
serial scheme, all the initiators on a bus have a strict priority; the one closest to the
arbiter always gets the bus first, then the next, and so on down the line.

In the parallel approach, all of the initiators request to the arbiter in parallel,
and, generally, it is first come, first serve, with some obvious implicit priority
based on the structure of the logic internal to the arbiter. In polling, each ini-
tiator gets priority to use the bus in turn. For example, if one initiator gets pri-
ority on the first cycle, the next one gets priority on the next cycle, and so on
until all devices have had a turn, at which time the cycle repeats itself. Some
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versions of PCI have a two-tiered form of polling, where all high-priority
devices are given a turn before the next lower-priority device gets a turn.

In most arbitration schemes, the devices must request the use of the bus. This
means that a device that does not have priority to get the bus on this cycle could
still get it if the devices of higher priority are not requesting the bus on that cycle.

Bus Hierarchy
Within a typical processor-based system, the hierarchy of buses goes from the
highest performance, most timing critical to the lowest performance, least tim-
ing critical. At the top of this hierarchy is a processor bus, which connects the
processor to its cache, memory management unit, and any tightly coupled co-
processors. The basic instructions and data being processed by the CPU run
across the bus. The bus affects CPU performance and is usually designed for the
highest performance possible for the given implementation technology (IC
process, library, etc.). Because the bus’s configuration varies with each proces-
sor, it is not considered a candidate for a VC interface.

At the next level, all of the logically separate, high-performance blocks in
the system, including the processor, are connected to a high-speed system bus.
This bus is typically pipelined, with separate data and address. It usually has
more than one initiator, and therefore contains some form of arbitration. The
processor has a bridge between its internal bus and this system bus. The sys-
tem bus usually contains the memory controller to access external memory for
the processor and other blocks.

The lowest level of the hierarchy is the peripheral bus. Usually a bridge exists
between the peripheral bus and the system bus. Typically, the only initiator on
a peripheral bus is the bridge. Since the peripheral bus provides communica-
tions to the interfaces with functions that connect to the outside world, most
of the devices on a peripheral bus are slow and generally only require 8-bit
transfers. The peripheral bus is, therefore, simpler, slower, and smaller than a
system bus. It is designed to save logic and eliminate the loading penalty of all
the slow devices on the system bus.

Bus Attributes
When describing or specifying a bus, you must identify its latency, bandwidth,
endian order, and whether it is pipelined.

Latency is the time it takes to execute a transaction across the bus. It has two
components: the time it takes to access the bus, and the time it takes to trans-
fer the data. The first is a function of the bus’s protocol and utilization. The
second is directly determined by the protocol of the bus and the size of the
packet of data being transferred.

Bandwidth is the maximum capacity for data transfer as a function of time.
Bus bandwidth is usually expressed in megabytes per second. The maximum
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bandwidth of a bus is the product of the clock frequency times the byte width
of the bus. For example, a bus that is clocked at 100 megahertz and is 32-bits
wide has a maximum bandwidth of 400 megabytes per second, that is 4 bytes
per clock cycle times 100 million clock cycles per second.

The effective bandwidth is usually much less than the maximum possible
bandwidth, because not every cycle can be used to transfer data. Typically, buses
get too many collisions (multiple accesses at the same time) if they are utilized
above about one-third of their maximum capacity. This effective bandwidth can
be lower when every other cycle is used to transfer the address along with the
data, as in buses where the same wires are used for the transfer of both data and
address, and is higher with more deeply pipelined separate address and data buses.

Pipelining is the interleaved distribution of the protocol of the bus over mul-
tiple clock cycles. In Figure 5.4, the activity on the bus consists of successive
requests to transfer data (a,b,c,d,e,f,g,h,i). First the master makes the request,
then the arbiter grants the bus to the master. On the next cycle, the bus initiates
the transfer to or from the target. After that, the target acknowledges the request
and on the following cycle sends the data. Not all buses have as deep a pipeline
as this. In many cases, the acknowledge occurs in the same cycle as the data. In
other cases, the grant occurs in the same cycle as the request. While there are
many variations to pipelining, they all serve to improve the bandwidth by elim-
inating the multiple dead cycles that occur with a non-pipelined bus.

The endian order determines how bytes are ordered in a word. Big endian
orders byte 0 as highest; little endian orders byte 0 as lowest. Figure 5.5 shows
the addressing structure.

The big endian scheme is appropriate when viewing the addressed text
strings, because it proceeds from left to right, because the byte address within
the word when added to the word address (in bytes) is equivalent to the actual
byte address, as can be seen in Figure 5.5. For example, byte 2 of word 0 in the
little endian example above would be byte 2, and byte 3 in word 1 would be
byte 7 by byte addressing. This is the word size (4) times the word address plus
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the byte size (4 1 + 3 = 7). In the big endian case, the same byte is word 1,
byte address 0.

Similarly, if the above examples contained the characters ABCDEFGH in the
two successive words, the big endian example would be ABCD EFGH, where
the little endian would be DCBA HGFE. If characters were the only type of
data, matching byte addresses would be sufficient. When you mix the two
addressing schemes for words or half words it is more of a problem, because the
mapping is context dependent, as can be seen in the diagram above. A system
chip might have some functions that require big endian and some that require
little endian. When a VC that is designed for little endian requests data from a VC
that is designed for big endian, translation from big endian to little endian is
required. In this case, additional logic for conversion must be in the wrappers.

VSI Alliance's VC Interface
The Virtual Socket Interface (VSI) Alliance has proposed a standard for a VC
interface that connects VCs to “wrapped” peripherals or on-chip buses (OCB)
(contains logic to translate between the VC interface and the bus interface
logic). The VC interface does not deal with processor buses or buses that are
entirely internal to VCs; these are the responsibility of the VC developer.

Figure 5.6 illustrates the VC interface providing connectivity between the
VC and the OCBs. The VC interface is the set of wires between the VC and
the bus interface logic, which connects it to the bus. The darker boxes on either
end of the VC interface are the logic necessary to create the VC interface on
both pieces.

Figure 5.7 shows the VC interface in more detail. The low-speed, peripheral
VC interface is a simple two-wire interface. The system bus interface or basic VC
interface requires more complex control, and to use all the features of a complex
system bus requires the full extensions of the interface. It needs a “wrapper” logic
to connect the VC to the VC interface and a “wrapped” bus to contain logic to
translate between the VC interface and the bus interface logic.
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Much of this overhead logic will either be necessary because of the differ-
ent address or data widths between the bus and the VC, or will disappear when
the two components are synthesized together. The wrappers can be complex
before the wrapper is synthesized. If the VC and bus are compatible, the wrap-
pers should largely disappear. If the VC and bus are not highly compatible, we
need a wrapper, which will have overhead (performance and gates), to make
them work together. This overhead is offset by the ease of connecting any VC
to any bus. The VC Interface Specification has options to accommodate most
buses andVCs.
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To keep the interface simple, the VC interface is a set of uni-directional
point-to-point connections across the interface. There are two sides to the
interface, a master and a slave. The master side makes requests and the slave side
responds. An initiator would have a master VC interface, and a target VC would
have a slave VC interface. The bus then must have both types of VC interfaces
to provide each component the opposite interface to connect to. If a block is
both an initiator and a target, it requires both types of VC interfaces and con-
nects to two VC interface slots on the bus.

The VC interface is a simple request-response system. Each transaction is a
pair of data packets. The write request contains words or “cells” of data, where a
cell is the size of the data interface across the VC interface. A read request has no
data, but the response packet contains the requested data. One or more cells of
data can be transferred in each packet. Two pairs of symmetric request-grant sig-
nals control the two requests. The master side issues a request for the initial packet,
and the slave side then issues a grant. The response packet is issued with a response
request from the slave, and the master side then issues a response grant. The
response packets contain an end of packet signal on the transfer of the last cell in
the packet. For more details review the VSI OCB Transactions Specification.

Transaction Languages
Transaction languages describe the transactions from VC to VC across a bus. A
transaction language can be written at several levels. These are syntactic ways of
communicating transactions, generally similar to generic I/O commands in a
high-level language. For example, the low-level VSI OCB transaction language1

includes the following types of commands:

No operation to specified address. Return false if
error, true if no error.
bool vciNop (unsigned int address)

1. VSI Alliance’s OCB VC Interface Specification, OCB Development Working Group.
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Store 8, 16 or 32 bits. Return false if error, true if

not.

bool vciStore ([unsigned char *r_opcode,] unsigned char

p_len, unsigned int address, unsigned char mask, char /

short / int data[, bool lock])

Load 8, 16 or 32 bits. p_len based on r_data. e_data

contains returned data. Return error as above.

bool vciLoad ([unsigned char *r_opcode,] unsigned char

p_len, unsigned int address, unsigned char mask, char /

short / int *r_data[, char / short / int e_data] [, bool

lock])

These are relatively complex reads and writes. They include all of the para-
meters necessary to transfer data across a VC interface. A file syntax also exists
to use with a simulation interface of the VC interface so thatVCs can be tested
either standalone or within the system, using the same data.

At this level, the transfer is not limited to the size of the cell or packet as
defined in the VC interface. The specific VC interface information is defined
in the channel statements, and kept in a packed data structure for the subse-
quent read and write commands. The following opens the channel:

int *vciOpen (int

*vci_open_data,"r"/"w"/"rl"/"rlw"/"rw",unsigned, char

contig, unsigned int p_len, unsigned int b_address, int

e_address [,unsigned char mask[, bool lock]]).

where vci_open_data is the control block that holds the data, followed by the
type of transactions on the channel (r is read only, w is write only, rl is readlock,
rlw is readlock write, and rw is read/write). b_address is the base address, and
e_address is the end or upper address for the channel. The rest of the parame-
ters are the same as used in the vciload and vcistore operations. This command
returns zero or -error for unable to open. Possible errors include “wrong p_len”
or “mask unsupported”. In this case, the mask applies to all the data of cell size
increments. vci_open_data should be 2 address size + cell size +10 bytes
with a maximum of 64 bytes.

The following command writes a full transaction:

Int vciTWrite (int *vci_open_data, unsigned int address

unsigned int t_len, char *data[,unsigned char *mask[,

bool lock]])
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where t_len is the amount of data to be transferred; mask is optional and anded
with the open mask. vciTWrite stops on the first error. It returns the amount
of data transferred.

The following command reads a full transaction:

int vciTRead (int *vci_open_data, unsigned int address,
int t_len, [char *r_data[,char *e_data[,unsigned char
*mask[, bool lock]]]])

where t_len is the amount of data to be transferred; mask is optional and anded
with the open mask. If e_data is provided, the count is to the first bad cell of
data. vciTRead stops on the first error. It returns the amount of data transferred.

The following command closes the channel:

int vciClose(int *vci_open_data)

vciClose returns the last error. An error will occur if the channel is not
opened for the type of operation being done.

When invoked, these read and write commands can call the simpler packet
load multiple times to complete the required transactions.

Designing Communications Networks
When designing communications networks, the buses must be defined, orga-
nized, and created in a way that corresponds to the communication requirements
between blocks in a specific design. This section provides methods on how to
determine the required bandwidths and latencies between blocks, what types of
ports to create between buses and blocks, and what type of arbitration is appro-
priate for each bus, when using a block-based design (BBD) methodology.

Mapping High-Level Design Transactions to Bus Architectures
In the process of refining a design from the systems model, the highest point
in which the communication between blocks in a design can be analyzed is
at the cycle-approximate behavioral level. Cycle-approximate behavior pro-
vides capacity information on the function being described, such as the num-
ber of clock cycles required per operation. At this level, the communication
between blocks is either direct signals or packets. The process below describes
how to translate statistics acquired from simulating the design at this level
into a definition of the necessary bus communication structure between the
blocks.
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The system design process described earlier started at an algorithmic, func-
tional level. It successively refined the design’s communications and functional
partitioning to a level where adequate statistics can be extracted and used in
defining the bus architectures for implementation.

Creating the Initial Model
Many system-level tools are capable of obtaining point-to-point bandwidth
and latency information from the system design using high-level testbenches.
A significant methodology transition is occurring from the current techniques
to function-architecture co-design; but if these modeling methods are not avail-
able, an alternative modeling and statistics extraction technique can be used,
which is described here.

First, we start with a block functional model of the chip, which contains
functional models of the blocks and an abstract model of the interconnec-
tions between them, as well as testbenches consisting of sets of functional
tests exercising a block or combination of blocks. Typically, this abstract
interconnect model is a software mechanism for transferring data from a
testbench and blocks to other blocks or the testbench. Ideally, it takes the
form of a communication manager (and possibly scheduler) to which all
blocks are connected. This scheduler is usually at the top level of the simu-
lation module. The pseudo code for such a scheduler might look something
like this:

While queue is not empty Do;
Get next transaction from queue;
Get target block from transaction;
Call Target Block(transaction);
End;

Where each block does the following:

Target Block(transaction);
Do block's function;
Add new transactions to the queue;
End

At this level there is no defined timing or bus size. All communication is
done in transactions or as packet transfers. The packets can be of any size.
The transactions can include any type of signals, since all communication
between blocks goes through the scheduler. Alternately, the more direct,
non-bus oriented signals can be set and read in a more asynchronous nature
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as inferred by the pseudo code below, which was modified from the block’s
code above:

Target Block(transaction);
Get direct, non-bus signal values from top level;
Do block's function;
Add new transactions to the queue;
Apply new direct, non-bus signal values to top level;
End

For simplicity, subsequent examples do not include these signals, but similar
adjustments can be made in order to include non-bus type signals.

The testbenches should include sufficient patterns to execute the func-
tionality of the entire chip. Target performance levels are assigned to each of
the sets of patterns at a very coarse level. For example, if frame data for an
MPEG decoder existed in one pattern set, the designer should be able to
define how long the target hardware takes to process the frames in that set. In
this case, the output rate should be equal to or greater than 30 frames per sec-
ond, therefore the processing rate must exceed that number. These perfor-
mance targets are used in the subsequent stages of this process to define the
required bus bandwidths.

The selected blocks for the chip should have some cycle-approximate spec-
ifications. These either already exist within the block functional models, or they
need to be incorporated into the model in the next step.

Modifying the Interconnect Model
Some designs, such as hubs and switches, are sensitive to data latency. Most
network devices, especially asynchronous transfer mode (ATM), have spe-
cific latency requirements for transferring information. If a design has no
specific latency requirement, it is not necessary to add cycle count approx-
imates to the model.

To adjust the interconnect model or scheduler, which transfers the data from
one block to another, we first need to add the amount of data that is being
transferred from one block to another and the number of transactions that are
conducted. This data is accumulated in two tables for each pattern set. For
example, in a chip with three blocks and a testbench, each table would be a
4x4 from-to matrix with the sum of all data transferred (in bytes) in the first
table, and the count of all transactions in the second table (see Table 5.2 and
Table 5.3). The diagonal in both tables should be all 0s. A more practical model
should also consider the buses going into and out of the chip, so the testbench
would probably have more than one entry on each axis.
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These tables were created using the following pseudo code:

While queue is not empty Do;
Get next transaction from queue;
Get sender block from transactions;
Get target block from transaction;
Get Transaction byte count;
Transactions Matrix (sender,target) =Transactions
Matrix(sender,target) + 1;
Data Transfer Matrix (sender,target) =Data Transfer
Matrix(sender,target) +
Transaction byte count;
Call Target Block(transaction);
End;

In the second step, the blocks have their estimated clock cycles per operation
added to the existing block functional models. The block models need to be mod-
ified to reflect the cycle-approximate operation as defined by their specifications
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if they do not already reflect the specification’s operation. This would typically be
done before layout of the block, but after completion of behavioral verification of
the block’s function. The cycle time of the clock should have already been defined,
in order to translate raw performance into cycle counts. After the approximate
cycle times have been added to the block’s functional models, they should be inte-
grated back into the chip model. This model will have cycle-approximate blocks
with no delay in the interconnect. A table similar to the ones above is then set up,
but this time it should contain the number of cycles each transfer should take,
from the time the data is available to the time the data arrives at the next block or
testbench.The interconnect model should then be modified to use this table. The
pseudo code for these modifications is:

While queue is not empty Do;
Get next transaction from queue;
Get time from transaction;
Get target block from transaction;

Call Target Block(transaction, time);

End;

Where each block does the following:

Target Block(transaction,time);
Do block's function;
Set Transactions' times to time + delay + Latency(this
block, target);
Sort new transactions to the queue;
End

Block to block signals are added as separate transactions in the timing queue,
in addition to the bus transactions, since these signals also have some delay (typ-
ically at least one clock cycle).

The testbench can then be modified to include the chip latency require-
ments. At this point, the designer needs to add estimated interconnect cycle
count delays, based on the flow of data in the design. The design is then simu-
lated to check whether it meets the cycle requirements of the design.
Modifications are then made to the table, and the verification process is
repeated until the cycle requirements of the chip are met. The designer should
use large interconnect delays to start and reduce them until the specifications
are met, which creates a table with the maximum cycle counts available for
each type of bus transfer. These tighter latency requirements translate into more
gate-intensive, bus-interconnect schemes. Table 5.4 shows an example of a
latency matrix.
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Cells that contain “na” in Table 5.4 indicate that no data is transferred, and
therefore are not applicable to the latency matrix.

Alternatively, this latency and bandwidth information can be obtained more
directly through the function-architecture co-design methodology and tools.
These tools include the monitoring and scheduling alternatives that are
described in the pseudo-code examples above.

Now having created the initial matrices, the subsequent procedures are
applicable in either case.

Transforming Matrices
The data matrix must now be transformed to reflect the natural clustering of
the data. This clustering transformation is done by trying to move the largest
counts closest to the center diagonal. There are a number of ways clustering
can be done; the process described below is one such way.
We now need a method for evaluating the “goodness” of the clustering. A
goodness measure is the magnitude of the sum of the products of each data
transfer count times the square of the distance that cell is from the diagonal. In
other words, the measure is the sum of the products of all cells in the data trans-
fer matrix and a corresponding distance measure matrix. For the 6x6 matrices
described above, a distance matrix might look like Table 5.5.
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Other measures could be used, but the square of the distance converges
quickly while allowing some mobility of elements within the system, which
higher-order measures would restrict.

Now sort the sites as elements:

Get Current cluster measure of matrix;
Do for Current site = site 1 to n-1 in the matrix;
Do for Next site = Current site + 1 to n in the matrix;

Swap Next site with Current site;
Get Next cluster measure of matrix;
If Next cluster measure > Current cluster measure

Then
Swap Next site with Current site back to

original location.
Else

Current cluster measure = Next cluster
measure;
End
End;

This is similar to a quadratic placement algorithm, where interconnect is
expressed as bandwidth instead of connections. Other methods that provide
similar results can be used. With the method used here, the cluster measure of
the original matrix is 428,200, and pivoting produces the matrix shown in
Table 5.6 with a cluster measure of 117,000.

Blocks 1 and 2, which have high data rate communication with the PCI and
Memory, must be on a high-speed bus, while the block 3 and PIO can be on
a low-speed bus. The PIO provides output only where all the others are bi-
directional. Also, because there is no communication between the components
on different buses, a bridge is necessary. We have defined the bus clusters, but
not the size and type of bus. In this example, no information is created, so what
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is read is written, hence each column and row totals match (except for Block 3
and PIO).This is not usually the case.

Selecting Clusters
With predefined bus signals, the initial clustering is done for all the connections
defined for those signals. This is pivoted to show the natural internal clusters, but
the original bus connections are still considered as one cluster, unless more than
one bus type is defined for the signals. In that case, the processor’s system and
peripheral buses are defined. The cluster is then broken into a system bus and
peripheral bus or buses, based on the clustering information. For example, if the
bus matrix defined in Table 5.6 were for a predefined set of buses, the initial
clustering would be for the whole matrix. But if more than one bus was defined,
the blocks that need to be on a high-speed bus would form one bus and the
rest would form another. This partition is then passed on to the next step.

In the rest of the cases, no predefined bus connections exist. These need to
be divided up based on the cluster information. Typically, the pivoted matrix
has groups of adjacent blocks with relatively high levels of communication
between them, compared to other adjacent blocks.

For example, in Table 5.7, A, B, and C form one independent bus cluster,
because there is high communication among them. There is no communica-
tion between A, B, and C and blocks D through H. Blocks D, E, and F form
another cluster, because they have high communication. The DE and EF pairs
could form two separate buses—a point-to-point for DE and a bus for EF. GH
is a third cluster. There are lower bandwidth connections between the EF pair
and the GH pair. Again, depending on the amount of intercommunication, the
four blocks, EFGH, could be on one bus, or they could be on two separate EF
and GH buses with a bi-directional bridge between them for the lower level of
communication.
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Cluster identification requires some guidelines on how to choose from a
number of different options. Let’s start with identifying the cut points between
the blocks to determine the possible clusters. A cut point is where less com-
munication takes place across the cut than between blocks on either side of the
cut. Using the Abstract Pivoted Matrix in Table 5.7, a cut between C and D
would produce the diagram in Table 5.8.

The communication between the two groups, ABC and DEFGH, is defined
by the sum of all the cells in the lower left quadrant plus all the cells in the upper
right quadrant. If this sum is 0 (which it is this case), the two groups have no
communication between them and will form completely separate buses. So first
cut the pivoted matrix where the resulting communication across the cut is 0.

Next, within each of the identified quadrants find the non-trivial cuts. A
trivial cut is one block versus the rest of the quadrant. The cuts should be sig-
nificant, meaning the communication between the resulting groups should be
much less than within each group.

In the Abstract Pivoted Matrix in Table 5.7, the first quadrant has no cuts,
and the second quadrant has one, as shown in Table 5.9. Here, the communi-
cation between the lower two quadrants is 22, where the communication
within each of the quadrants is a very large number (##).This could indicate
two buses with a bridge between them.

If this technique is employed on the original example (Table 5.6), the clus-
ters in Table 5.10 are created. This example shows two buses with a bridge
between them. One has a lot of data transferred on it, while the other has very
little. Another cut between Block 3 and PIO would have resulted in an even
lower communication between the clusters, but this is a trivial cut because it
leaves only one block in a cluster, and was therefore not used.

This technique does require system knowledge. The timing of the data and
the implementation details, such as existing bus interfaces on blocks, the addi-
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tional requirements of a processor, and the number of masters on the bus, are
outside the scope of this procedure, but should be taken into consideration. By
deviating from the cluster structure obtained by the methods described here, a
bus structure that has either better performance or lower gate count could be
created. In that case, when these factors are determined, the developer might
want to return to this method to modify the clustering results.

Selecting Bus Types and Hierarchy
The next step is to define the attributes of each of the buses identified in the
clustering process described previously. To select the appropriate bus, each clus-
ter is analyzed for existing bus interfaces. If none or few exist, the bus is selected
by matching the attributes of buses available in a user library. The outputs of this
process are a defined set of buses and a bus hierarchy, which are used in the
next step.

Buses can be categorized according to latency and bandwidth utilization,
which is a function of architecture. Pure bandwidth is a function of the num-
ber of wires in the bus times the clock frequency the data is being transferred
at. Table 5.11 lists bus attributes from lowest bandwidth utilization and longest
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latency to the highest bandwidth utilization and shortest latency. Typically, the
cost in logic and wires is smallest with the first, and largest with the last.

Bus type is defined by a range of latency (cycles) and bus bandwidth (uti-
lization percentage). Each bus can have a different clock cycle time and size.
The utilization percentage is the effective throughput divided by the product
of the cycle time times the size of the bus; 100 percent means every cycle is
fully utilized. The Latency Data column is the number of cycles needed for a
bus word of data to be transferred. The Transfer column is the average number
of cycles to begin a bus transaction.

A library of buses gets created after a number of projects. Each bus entry
should contain information on the bus type and attributes from the VSI
Alliance’s OCB Attributes Specification. Some examples of bus types are PCI,
which is a type 4 bus, and AMBA’s system bus, which is a type 5. The board-
level bus for the Pentium II is a type 6 when used in a multiple processor con-
figuration.

Bus Clustering Information
Next, the bus latency, bandwidth, and clustering information needs to be
translated into a form that is useful for determining the type and size of the
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buses. If we look at the information in Table 5.10, the first four entries are
clustered in one block, and the last two are clustered into a second block. The
bus bandwidth is first determined by summing up all the transactions that
occur within the identified clusters in the matrix. In Table 5.10, this is 62,600
within the large cluster, 100 within the small cluster, and 1,200 between the
clusters, as shown in Table 5.12, which is created by summing all the entries
in the four quadrants.

For example, if the time this pattern set is expected to take is 1 millisecond,
the fast cluster must transfer 63,800 bytes of data in 1 millisecond—1,200 bytes
to the bridge and 62,600 bytes internal to the bus. This translates to a 510
megahertz bandwidth. If the clock cycle is 20 nanoseconds, and the bus uti-
lization is 25 percent, the number of bits rounded to the nearest power of 2 is
64. Or 64 25%/20ns = 800 mhz > 510mhz. If we use a type 4 or 5 bus, we
need at least 64 bits.With a 20-nanosecond cycle time, we need only 8 bits for
the slower cluster.

Latency information is partially a function of the utilization, because
increased utilization of a bus causes increased latency. This complexity has not
been included in this example, since it is partially accounted for in the utiliza-
tion numbers. But assuming we use the minimum bus utilization numbers for
the bandwidth calculation, the latency should be toward the minimum as well.
To create a margin, we should select the worst case latency requirement (small-
est) from the cluster. The latency matrix in Table 5.4 provides the latency of the
entire transaction, but the Bus Taxonomy Table has the bus latency data and
transfer as separate numbers. For example, for a type 4 bus, the transfer latency
is 10. The data latency is the number of cycles required for the data alone. We
have to calculate what the transfer latency would be by subtracting the data
transfer time from the numbers in the latency matrix. The data transfer time is
the data latency cycles for this bus type divided by the number of words in the
bus times the average transaction size. The average transaction size is the num-
ber of bytes of data from Table 5.2 divided by the number of transactions in
Table 5.3. To compare the latency from the table, we have to make a latency
matrix as shown in Table 5.13, which is based on the latency matrix from sim-
ulation (Table 5.4) minus the transaction’s data latency.



104 Surviving the SOC Revolution

Each element in this matrix is calculated as follows:

Resulting Latency(x,y) = Latency (x,y) - Bus Latency
data(type) *
Data Transfer(x,y) / [Transaction(x,y) * bus size]

The smallest number in the system bus cluster is 25. This should be larger
than the transfer latency for the type of bus we need because of bandwidth. In
the Latency Transfer column of the Bus Taxonomy Table that number is 10, bus
type 4. We can therefore choose a bus type 4 or better for the fast cluster.

Selecting Buses
Selecting buses is typically done using the following steps:

1.

2.
3.

4.
5.

6.
7.
8.

Eliminate buses that do not meet the cluster’s bandwidth and latency
requirements.
If the bus is already defined, use that bus; otherwise go to step 3.
If a processor is present, use a system bus that it already connects to;
otherwise go to step 4.
Select a bus most blocks already connect to.
Use a bus that can handle the endian method of most of the blocks
connected to it.
Use multiple buses if the loading on the bus is excessive.
Separate out the lower bandwidth devices onto a peripheral bus or buses.
Use a peripheral bus that has an existing bridge to the selected system bus.

Each of these conditions can be tested by inspecting the parameters in the
bus library and the interfaces of the blocks in the design. If there is more than
one choice after this selection process, choose the one that best meets the VSI
Alliance’s OCB Attributes list (this will be the one with the most tool and
model support, etc.).
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After the buses and their loads are identified, the bridges need to be identi-
fied. If two buses are connected in the reduced bus matrix in Table 5.12 (their
from/to cells have non-zero values), a bridge must be created between them.
Using the pivoted data matrix and the reduced bus matrix, we can create the
following bus model:

System bus (type 4 or 5) of 64 bits connected to:
Block 1 (R/W)
Block 2 (R/W)
Memory (R/W)
PCI (R/W)

A Bridge (R/W) to:
Peripheral bus (type 3 or better) of 8 bits connected to:
Block 3 (R/W)
PIO (Write only)

The PIO is write only, because no data comes from it. The bridge is
read/write, because both diagonals between bus 1 and 2 are non-zero. This
model is used in the next task.

Creating the Bus Design
In this step, the selected buses are expanded into a set of interface specifica-
tions for each of the blocks, a set of new blocks, such as bridges, arbiters, etc.,
and a set of remaining glue logic. The block collars and new blocks are imple-
mented according to the specifications, and the glue logic is transferred as mini-
blocks to chip assembly.

Defining the Bus Structure
In defining the bus structure, we can first eliminate all buses with a single load and
a bridge by putting the load on the other side of the bridge. It is both slower and
more costly in gates to translate between the protocol of the system bus and the
peripheral bus for only one load. The bridge logic cannot be entirely eliminated,
but the tristate interface can. The peripheral bus reduces to a point-to-point com-
munication, and its 8 bits can be turned into 16 without much penalty.

Next, we need to assign bus masters and slaves to the various loads. We can
start with the bridge. The slower peripheral side has a master, the faster system
side a slave. All devices on peripheral buses are slave devices. On the system bus,
the master and slave are defined by which devices need to control the bus. If a
processor is connected to the bus, its interface is a master. Otherwise, if there
are no obvious masters, the external interface, such as the PCI, is the master.
The memory interface is almost always a slave interface. To determine which
block requires a master interface, refer to the bus’s interconnect requirements.
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If a processor or other block is connected to a bus that has a memory inter-
face, and the block specifically requires it, include one or more direct memory
access (DMA) devices on the bus to act as bus masters. If there are two or more
bus masters, add an arbiter.

Creating the Detailed Bus Design
With the structure defined, the detailed bus interface logic must now be created.
If the interfaces already exist on the blocks, they should be in a soft, firm, or
parameterized form, so they can be tailored to the bus. If this is the case, use the
existing bus interface logic; otherwise use the models provided with the bus. If
the blocks have a different bus interface, eliminate it if possible. The bus inter-
face logic is then connected to the resulting interface of the block. This bus
interface logic must be modified so that it interfaces with the bus, as follows:

1.

2.

3.

4.

5.

Assign address spaces for each of the interfaces.
The address space is usually designed to match the upper bits of the
transaction address to determine whether this block is being addressed.
Make sure that each block has sufficient address space for the internal
storage or operational codes used in the block.
Eliminate write or read buffers if only one function is used.
Most existing bus interfaces are designed for both reads and writes. If only
one direction is needed, logic is significantly reduced. For example, if the
bus takes more than one clock cycle, read and write data is usually
separately buffered. If only one direction is needed, half of the register bits
can be eliminated.
Expand or contract the design to meet the defined bus size.
Most existing bus interfaces are designed for the standard 32- or 64-bit
bus, but other alternatives are often available. This requires eliminating or
adding the extra registers and signal lines to the logic. For buses that
interleave the address and data onto the same bus signals, a mismatch in
data and address size eliminates only the upper order address decode or
data register logic, not the data signals.
Modify the bridges’ size mappings between their buses.
This is the same as step 3, but for both sides of the bridge.
Add buffers as necessary to the bridges.
Bridges require at least one register for each direction be equal to the
larger of the buses on either side for a read/write interface. In addition to
the one buffer for data in each direction, bursts of data might be
transferred more efficiently if the data is accepted by the bridge before
being transferred to the next bus. This could require a first-in first-out
(FIFO) memory in each direction where a burst is stored and forwarded
on to the next bus, as shown in Figure 5.9.
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6.

7.

8.

9.

10.

11.

Define the priority of the bus masters and type of arbitration.
If more than one master on a bus exists, arbitration must occur between the
masters. If the masters handle the same amount of data, with similar
numbers of transactions and required latency, they should have equal polling
priority. However, if there is a clear ranking of importance among the
masters, an equivalent order for the amount of data, transactions, and lowest
latency, the arbitration should be serial with the most critical master first.
Create and connect the arbiter based on the definitions in step 6.
Arbitration schemes can be distributed or centralized, depending on the
bus. Try to distribute the arbitration logic as much as possible, since it
needs to be distributed into the blocks with the glue logic.
Map the bus to the interface logic as required by the device’s endian
method.
While most buses are little endian, some devices are big endian. When
different endian types are used, you must decide how to swap the bytes
of data from the bus. Unfortunately, this is context-dependent in the
most general case. If all transactions to and from the bus are of the same
type of data, a fixed byte swapping can be employed, otherwise the bus
masters must do the swapping.
Tailor any DMA devices to the bus.
DMA devices, which are essentially controllers that transfer data from
one block to another, must be modified to the size of the address bus.
Add any testability ports and interfaces, as necessary.
The test features might require additional signals to differentiate the test
from the normal operation mode.
Add any initialization parameters, as necessary.
Some buses, such as PCI, have configuration registers, which can be
hard-coded for those configurations that do not change.
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12. Add optional bus capabilities as required by the devices on the bus.
Some buses have advanced capabilities, such as threads, split transactions,
and error retry, which might not need to be implemented if the devices
connected to the bus do not require them. Some of the additional
capabilities, such as DMA devices, non-contiguous burst transfers, and
error recovery control, might require more signals than defined in the
standard bus. These signals should be added to the bus, if necessary.

Port Splitting and Merging
In the example in the previous section, we assumed each block required only
one interface or port to a single bus. This is not always the case. Under certain
conditions, it is desirable to convert a single port into two ports, or a block that
was designed with two ports into one that has only a single port. This is called
port splitting and merging.

Port Splitting
Port splitting is done when there is a high point-to-point bandwidth or tight
latency requirement between two blocks and one of the blocks only commu-
nicates with the other. Using the previous clustering example, as shown again
in Table 5.14, if the communication between or within clusters is not between
all blocks, some further optimization can be done. Optimization is necessary if
the latency matrix has very different communication requirements between
certain blocks. For example, the matrix shows that the GH cluster does not
communicate with DE. Furthermore, DE and EF communicate but D and F
do not. If the latency requirements for DE are very tight, it makes sense to split
out the DE communication from the rest of the bus. The resulting matrix
would look like the one in Table 5.15.

In this case, we split out E and E' into what appears as two separate blocks,
because separate interfaces will be created on E for the two buses. If a block
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starts out with two or more bus interfaces, this technique can be used to effec-
tively use the separate interfaces. Now the DE interface can be reduced to a
point-to-point connection to satisfy the tight latency requirements. E' and F
then form a bus with a bridge to the bus containing G and H.

Port Merging
Port merging is done when a block has two separate ports, and it is necessary
to include both ports to create a proper set of data and latency matrices. The
ports would then be sorted as if they were separate blocks. If the resulting clus-
tering showed the two ports on two separate buses, they could be built that
way, or if both buses are underutilized, they can be merged together. A process
similar to that of merging of peripheral buses should be followed, but one tar-
get frequency of the merged bus must result, even if there were originally dif-
ferent clock frequencies for the two buses.

If the original ports consisted of an initiator and a target port, there might be
little reduction in the resulting control logic. Figure 5.10 shows an example of
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this kind of merging, where block C has an initiator on Bus 1 and a target on
Bus 2. After merging the buses, the data port can merge but the address logic
remains largely separate. This port merging can result in internalizing some
arbitration between the original data ports, as is shown by the two data port
interfaces remaining on block C.

Mapping Arbitration Techniques
Most arbitration techniques are generally mixes of round robin polling and ser-
ial priority schemes. Polling gives each of the initiators equal priority. It shifts
from one to the next on each clock cycle, stopping when one of them wants
the bus. Priority arbitration gives the bus to the initiator with the highest pri-
ority; the lowest priority initiator gets the bus only when all the other initia-
tors do not require it.

To determine which arbitration structure makes the most sense, establish the
minimum transaction latencies for each of the initiator blocks from and to all
the other non-initiator blocks. Do the same for the transfer latencies. Sort this
list by size of the transaction latency. This should produce a list of the initiator
blocks in increasing latency, as shown in Table 5.16.

If the transaction latencies are all approximately the same size and close to
the latency of the selected bus, choose a round-robin polling structure.

If the latencies increase successively as you go down the list by at least the
transfer latency of the previous element in the list, or the minimum latency is
larger than the sum of the bus’s transaction latency plus all the transfer latencies
of the initiators, choose an ordered priority arbitration structure. An ordered
priority arbitration structure is less costly in gates and should be chosen when
any arbitration structure would work. In addition to the latency requirements,
the total required bandwidth on the bus must be sufficiently lower than the
available bandwidth to allow lower priority devices access to the bus when
using the ordered priority structure. In general, the deeper the priority chain,
the larger the excess bandwidth must be.



Designing Communications Networks 111

Using a Platform-Based Methodology

This section describes the communication differences between the block-based
design methodology described above and a platform-based design (PBD). To
develop derivatives quickly, you must start with a predefined core for the deriv-
ative that includes the processor, system bus, and the peripherals necessary for
all products in the given market segment. These cores are called hardware ker-
nels, and at least one is contained in each platform-based derivative design. The
communication structure of a platform design is similar to the structure of the
general design described above, which has predefined buses, but the bus struc-
ture of the design is separated by VC interfaces on the hardware kernel.

Mapping to a Platform
Using the VC Interface Specification, which includes a transactions language as
well as the VC interface definition, you can define a specific bus structure
within a hardware kernel and interface to it using VC interfaces. This enables
the designer to specify the communication requirements as in the methods
described earlier, but also deal with the portions of the design applied to the
hardware kernel as predefined bus interconnections.

The major difference between the general methodology described earlier
and PBD is the way the bus is treated after the transaction analysis is completed.
In the general mapping process, the bus components must be developed and
inserted in the design as separate mini-blocks. In PBD, the bus starts out as a
predefined part of the hardware kernel, as shown in Figure 5.11.

The hardware kernel has VC interface connections to the other blocks in the
design. To get from the initial form to the translated form, you must execute a
modified form of the earlier methodology, but unlike that methodology, the
blocks in PBD can be either software or hardware. The software blocks are allo-
cated within the processor block or blocks contained within the hardware ker-
nel. Once this assignment is completed, a cycle-approximate behavioral model
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of the blocks, including the processor block with the allocated software blocks,
is created. The communication in this model occurs between the blocks within
the model in the same manner as in the general communication model.

With the more formal function-architecture co-design approach, mapping
can be done using an algorithm similar to the one described here or through
other iterative techniques.

Clustering can be done in the same way. Since the blocks within the hard-
ware kernel are already connected to specific buses, they should either be mod-
eled as one block or moved together in the clustering process. The end result
should show which blocks in the derivative design belong on each bus. This is
defined using the following procedure:

1.
2.
3.
4.
5.
6.

7.

8.

Define one block for each bus internal to the hardware kernel.
Include all the blocks on that bus within each created block.
Delete the internal block to block bandwidth/bus utilization from each bus.
Add each peripheral block to the matrices.
Pivot the matrix as defined in the general method.
Assign all the peripheral blocks to the hardware kernel bus blocks in order
of the highest affinity first, up to the VC interface or bandwidth limits of
each bus.
If there are more peripheral blocks than VC interfaces or available
bandwidth on a hardware kernel bus block, create a bus with a bridge
connected to one of the hardware kernel bus block’s VC interfaces and
reorder the peripheral blocks according to their clustering in the pivoted
matrices.
Connect the peripheral blocks to their assigned bus or VC interface.

In this procedure either the peripheral blocks are all assigned to VC interface
ports on the hardware kernel, or one or more additional external buses will be
created. If the clustering suggests no additional buses need to be created, the
assignment can be implemented as shown in Figure 5.12.

If additional buses need to be created, connect the appropriate blocks to it.
The additional external bus is then connected by a bridge to one of the hard-
ware kernel’s VC interfaces, which, in turn, is connected to the hardware ker-
nel’s system bus.

During this process, add arbiters or bridge logic, as necessary, depending on
which blocks are initiators and which are targets. In general, the initiator blocks
should all be either connected directly to the hardware kernel’s system bus via
a VC interface, or a bi-directional bridge with initiator and target capability
should connect the hardware kernel’s system bus to an external system bus con-
taining an arbiter. This type of bridge requires both a master and a slave inter-
face to the hardware kernel’s bridge. If this displaces an additional peripheral
block, assign that block to the next closest bus in the sorted matrix.
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Verifying the Bus Structure
To test each of the blocks the vectors need to be in transaction language form.
Each block is individually tested first with its vectors. Then later, the testbench
is used to communicate in the transaction language through the bus to the
individual blocks. The vectors are distributed in the same fashion that would be
seen in the system. This could be the initial system bus verification method,
which later can be augmented with system-level transactions.

The transaction language is hierarchical. The highest level is timing-
independent, while the lowest level is cycle-timing specific. This results in a
new methodology for migrating the testbench, so that it can be applied to suc-
cessively more accurate models, while keeping the same functional stimulus
(this is further discussed in Chapter 7).

Bus Mapping Example
Assuming we have the following hardware kernel:

System bus (type 4 or 5) of 64 bits connected to:
Processor (R/W)
VC interface (R/W)
VC interface (R/W)
PCI (R/W)
A bridge (R/W) to peripheral bus (type 3 or better) of 8 bits

connected to:
VC interface (R/W)
VC interface (R/W)
PIO (Write only)
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Further assume we have blocks A through H in a design. Blocks A through
E are software blocks, and F through H are hardware blocks. Since there is only
one processor, assign blocks A through E to the processor block. Simulation
yields the following data transfer matrix:

Collapsing the hardware kernels to one block per bus produces the following:

We created block X for the system bus, and put the processor and PCI block
into block X. The total number of bytes transferred internally to the PCI and
processor is 6,200 bytes. A type 4 or 5 bus’s minimum utilization is 25 percent (see
Table 5.11), so the reduction on the required bandwidth must be the actual data
transferred (6,200 bytes) divided by the utilization (25 percent). In other words, if
only one byte in four is used on the bus, the reduction in required utilization is
four times the number of bytes no longer transferred on the bus. We do not need
to do anything with the PIO, because there are no other blocks to merge with.

Now, we can pivot the lower matrix, which yields the following:
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Since there are two VC interfaces for the bus block, X, F, and H connect to
those VC interfaces. Similarly, block G connects to one of the VC interfaces
on the peripheral bus. If there were only one VC interface on the system bus
(which in actuality cannot happen because of the need for verification), a
bridge block would need to be inserted with another system bus for blocks F
and H. This structure looks like the following:

System bus (type 4 or 5) of 64 bits connected to:
Processor (R/W)
PCI (R/W)

A bridge (R/W) to another system bus (type 4 or 5) of xx bits con-
nected to:

Block F (R/W)
Block H (R/W)

A bridge (R/W) from the original system bus to peripheral bus (type
3 or better) of 8 bits connected to:

Block G (R/W)
VC interface (R/W)
PIO (Write only)

There are only two VC interfaces, so testing consists of connecting the
behavioral VC interface model to one of the interfaces, and connecting block
F to the other. After testing it, the locations are swapped, so that block H can
have the slot previously occupied by the behavioral VC interface model, and
the behavioral model can be installed in block F’s site. Note that because the
address has to be compensated for in the VC interface model, the transaction
vectors need to be relocated.

Communication Trade-offs

This section discusses some of the communication trade-offs that occur in
regards to memory sharing, DMA and bridge architectures, bus hierarchy, and
mixing endian types.

Memory Sharing
At the algorithmic design level, there is no separation between software and
hardware design. As the functionality is broken out into separate sections or
blocks in the design, transferring information between the blocks is typically
done through memory. For example, one task gets some information from
memory, transforms it in some fashion, and puts it back into memory. The next
task, or the task after that, gets these results and further processes them. When
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converted to a behavioral-level design, this leads to a shared memory structure.
The simplest structure is one memory with all devices accessing it as can be
seen in the left diagram in Figure 5.13. By separating the memory structures
into distinct areas corresponding to the communication between different
blocks, the memory can appear as a holding area for data that is being trans-
ferred between blocks, as illustrated in the right diagram in Figure 5.13.

This can be further refined by separating the memory where bandwidth
and clustering of the blocks warrants separate structures. These are separate
blocks of memory, each being shared by two or more blocks, as a way to com-
municate blocks of information that are larger than a single burst of data.
Clustering may result in a separate bus. The shared memory communication
structure can be converted into a bridge with memory, or a FIFO to store this
stream of data between separate blocks and buses in the design, as shown in
Figure 5.14.

In the simplest case, communication might be between memory and two
other devices. If one is serially writing the data and the other is serially read-
ing the same data, the memory can be replaced by a simple FIFO, and no
intervening bus is necessary. If this serial transmission is occurring between
multiple blocks on separate buses, a FIFO bridge might be appropriate. If sev-
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eral are reading and writing, an equivalent number of FIFOs might be appro-
priate. If the blocks are randomly reading or writing data to the common
memory and no amount of further segmentation can separate out these ran-
dom interactions, the communication between the blocks should be through
a shared memory.

Whenever possible, convert shared memory to any type of FIFO, because
on-chip memory is limited relative to off-chip memory. Access to off-chip
memory takes many more clock cycles than on-chip memory. If it is possible
to convert, you must determine the size of the FIFO, which is discussed in the
next section.

FIFO Design and Depth Calculation
Figure 5.15 shows the basic structure of memory-based and register-based
FIFOs. The memory-based FIFO is a 1R/1W two-port memory, with a write
and read counter. It also contains some comparison logic to detect an under-
flow (when the read counter equals the write counter) or overflow (when the
write counter counts up to the read counter). The read and write counters
start at zero and increment after each operation. They are only as large as the
address bits of the memory, so they automatically wrap from the largest address
back to zero.

The register FIFO captures the data in the farthest empty register in the
chain. When a read occurs, the contents of the registers shifted one to the right.
Control logic keeps track of which registers are empty and which are full. It is
typically one extra bit that is loaded with a shifted 0 right on a read and a
shifted left 1 on a write.

The size of the FIFO can be statistically or deterministically derived depend-
ing on the nature of the traffic into and out of the FIFO. If there is a statistically
random set of reads and writes, queuing theory says the average frequency of
reads must exceed the average frequency of writes, or the FIFO will require
an infinite number of entries to avoid overflowing. If the time between reads
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and writes is an exponential distribution, the average length of the queue can
be determined, as follows:

1.
2.

3.

W equals the mean rate of writes, and R equals the mean rate of reads.
If T = W/R < 1, the average number of used entries of the FIFO is
L=W/(R-W).

To calculate the proportion of time that the queue will overflow: Time of
overflow = 1 - (1 - W/R)     Sum[(W/R)     K for K = 0 to the queue
length]. K = L gives you the proportion of time the queue will overflow
at the average depth.2

If the average rate of reads is 8/us, and the average write rate is 4/us, then
L = 4/(8 - 4) = 1. For a queue size of N, the proportion of time it will over-
flow is =

A queue of 21 will overflow once every of the time, but the average
write is .25 micro seconds or approximately times a second, so on average
the queue will overflow once every second. If W/R is close to 1, you need a
very large queue to prevent overflows.

The deterministic method simulates the design over a reasonably extreme
test case, or calculates the worst case size of the FIFO. For example, if two tasks
write into the FIFO 32 words each and then wait until the tasks on the other
side have read the 64 words before writing any more, the queue only has to be
64 words deep.

DMA and Bridge Architectures
DMA acts as an agent to transfer information from one target to another.
Usually, the information is either in memory and needs to be transferred to an
I/O device or the other way around. Typically, there are hardwired lines from a
processor to a DMA engine, though a DMA can be a standalone device on the
bus. Generally, the processor sends the transaction information to the DMA via
a direct connection, and the DMA executes the transaction via a bus transaction.

Some DMAs, like bridges, have enough intermediate storage to get the data
from one target and pass it on to the other target, but in other cases it is control
logic only. This control logic intervenes between the two targets to coordinate
the requests and grants. By requesting a transaction of both devices, one write
and one read, it waits until it has both devices and then initiates the transaction.
The addresses of the reads and writes are from and to the respective targets. It
then coordinates the read data with the write data by changing the address on
the bus, so that both devices believe they are transferring information to and
from an initiator when they are actually transferring the information directly

2. Frederick S. Hillier and Gerald J. Lieberman, Operations Research, pp. 404–405.
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between themselves. In some systems, this is called “fly by,” because the data flies
by the device requesting it.

Bridges do not usually employ a fly-by strategy, because the bus widths and
speeds are usually different on either side of the bridge. They usually have some
intermediate storage to synchronize the data transfer between the two buses. In
general, the greater the performance and size differences between the two
buses, the larger the intermediate storage needed to insure efficient transfers of
data between the two buses.

For example, if the system bus is running at twice the peripheral bus speeds,
is four times the size, and one word can be transferred from the system bus per
clock cycle, it will take eight clock cycles to transfer that word onto the periph-
eral bus. The bridge needs at least one word of storage, but must hold off (not
acknowledge) the system bus for eight cycles before it can accept the next
word. Alternatively, if the bridge usually gets eight word transfers, it can read
all eight words into a FIFO, and spend the next 64 clock cycles writing out
the burst transfer. Usually the transaction is not complete until all the data has
been accepted by the target, regardless of how quickly the bridge can read the
data, but some sophisticated buses can split the transaction, that is allow other
operations to occur between other devices on the system bus while waiting
the 56 cycles it takes for the data to be read by the target on the peripheral bus.
For these types of sophisticated buses, the bridge should have FIFOs that are
deep enough to handle most bursts of data sent through them from the system
bus. In the direction of peripheral to system bus, the data can be collected by
the bridge and then be transferred as one burst in a fashion similar to the write.

Flat Versus Hierarchical Bus Structures
It is usually more efficient to have all the devices in the chip on a single bus.
There is far less latency in the transfer of data between two devices on a com-
mon bus than occurs when the data is transferred between buses. Both buses
must be requested and be granted before a transfer can take place between two
buses. Unfortunately, in large single bus systems, the more loads a bus has, the
slower it operates. If there are a lot of loads on a bus, the resistance-capacitance
(RC) delay of the physical structure can affect the performance of the bus. The
loads must then be divided among multiple buses, using a hierarchical structure.

The bandwidth limitations of the bus is another reason for building hier-
archical structures. When the total bandwidth requests from all the devices on
the bus gets above a certain point, for example 40 percent of the bandwidth
of the bus, the latency to get access to the bus can be too long. To minimize
these long latencies, the devices can be clustered into groups, where each
group becomes a bus with far less required bandwidth than the single bus. For
example, a bus might be 50 percent utilized by burst transactions that each
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take 16 cycles to transfer. As was shown in a similar queuing problem earlier,
every million or so transactions the latency could get to be 21 times of the
average delay, or as much as 336 cycles. In this case, it is more efficient to break
up the bus into two buses, ideally with each only slightly above 20 percent.
The best place to make that separation is at the point where the least amount
of bandwidth is required between the two buses, while keeping the bandwidth
of each bus as low as possible.

Using a VC Interface
A VC interface is useful anywhere the designer is connecting two VCs together
via their bus interfaces or any VC is being connected to a bus, except where
critical timing and gate count considerations require a hand-tailored interface
design. The VC interface requires a logic wrapper to interface between the inter-
nal logic of the VC or the bus interface logic and the VC interface. Not all of the
wrapper logic synthesizes away, and in some cases it is desirable not to eliminate
the wrapper logic. The VC interface will become a more well-known and
understood interface as tools are developed to support it, but in some circum-
stances the overhead of the additional wrapper logic might be unacceptable.

For example, the most timing critical areas of an SOC design are typically
between the main processor and its memory or critical I/O subsystem.
Whenever DMA, or other independent I/O to memory activity, occurs within
a system with cache memory, the processor interface must snoop the bus to
insure the cache coherency. Timing on a cache miss is critical, because the
processor has either stopped or will stop soon. For these reasons, it is desirable to
tune the processor interface to the bus in the SOC design, not just for the sav-
ings in gates, but more importantly, to save a cycle or two in the transfer of data.

The memory controller is also critical. If the memory is relatively slow, and
the controller does not handle intermediate staging of lines of data, the VC
interface might not affect the performance that much. However, in cases using
fast access memory or multiple threaded access from multiple initiators on the
bus, the additional wrapper logic might be too costly. In those cases, tune the
memory controller to the specific bus. All other devices will probably not see
a large performance hit by keeping the synthesized remains of the wrapper
logic or the complete VC interface in the design.

It is expected that even these restrictions will disappear as bus developers
and intellectual property (IP) developers create buses and VCs that more nat-
urally fit the VC interface structure. When this happens, the VC interface
becomes the natural interface between the bus and the VCs. As such, it will
have no significant overhead.

Although a VC interface works with VC to VC connections, it has more over-
head than a simpler point-to-point protocol. Even when the natural interface for
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the VCs is a VC interface, you might need to modify both VCs to eliminate pos-
sible redundant clock cycles created by combining both sides of the interface
together.

In cases where the VC interface is eliminated by synthesis or was never used
because the interface was designed by hand, additional removable logic could
be added to create a VC interface for debugging the actual interface. This logic
could be removed after the system has been verified, but before the production
version masks are cut.

Endian Options
When combining external IP with internal designs, there is always the possi-
bility that the external IP has a different endian type than the rest of the system.
The translation from one endian option to the other is context-dependent.
You cannot use a fixed translation of the bytes. If the byte addresses between big
and little endian were exactly mapped, byte streams would always translate cor-
rectly, but half words and full words or larger would each have different trans-
lations. Each would require swapping the bytes within the data being
transferred.

The bus does not know the type of data being transferred across the bus;
only the initiator and targets know. One way to work around this is to have
the IP developer produce both big and little endian VCs, and choose the right
one for the system. Unfortunately, this is not always possible, especially with
legacy designs. However, this option requires no changes to the existing hard-
ware kernels or any other part of the system.

Another option, which is the most common one used today, is to have the
initiator keep track of which endian method the various targets are, and map
the data accordingly. Frequently, the initiator is a processor, and therefore it
would know the context of the data being transferred. With this option, only
the software in the processor’s I/O handlers needs to be changed, which, unfor-
tunately, can be difficult when a previously verified hardware kernel that does
not allow this type of change to its I/O routines is being used.

There is a third option when using an advanced VC interface, which is to
transfer the context of the data along with the data itself across the bus. The
bus can then be assigned an endian type, and all transactions across the bus
would have that endian method. In other words, each VC interface would
translate the transactions into and out of the endian type of the bus. In this case,
the master and slave VC interfaces on the bus would all have the same endian
type. If an initiator and target were both the same endian type as the bus, no
translation would take place across those interfaces. However, if a target or ini-
tiator had the opposite endian type as the bus, some wrapper logic would be
generated as part of the master VC interface wrapper. This logic would look at
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the size of the data types being transferred to determine what byte swapping
needs to be done across the interface.

This option is the least disruptive of the existing hardware kernel. It also
enables the derivative developer to connect various endian types to the existing
endian type of a hardware kernel. This is the most flexible option, but requires
that the data context is built into the VC interfaces and transferred across the
bus, which needs to be planned early in the process of creating a platform.

Moving Forward

This section discusses future trends for on-chip communications.

From Buses to Networks
The difference between buses and networks is in the average latency of a read
request, as compared to the communication structure’s bandwidth. Buses take
only a few clock cycles to access the bus and get a response, unless the bus is
busy. Networks take many cycles to access a target and get a response back.
Sophisticated buses use a large percentage of their available bandwidth, whereas
networks begin to suffer if more than 40 percent of their bandwidth is utilized.
As we move toward complex SOC design, the size of the chip versus the size
of the VCs will grow, leading to relatively slow OCBs. At the same time, the
ability to put many wires on a bus means their bandwidths will be extremely
large compared to board-level buses today. This suggests that future OCBs will
develop more network-like characteristics, and the additional cost of logic will
be largely ignored due to the decreasing cost per gate.

From Monitoring to Hardware Monitors
As we move to network-like structures instead of buses, and more programma-
ble elements on the communication structures, the need to tune the arbitration
structures becomes important to the performance of the overall system. This
will require two things: a way to tune the arbitration, and a way to monitor the
transactions across the communication structure to determine what changes are
necessary. The tuning requires sophisticated analysis, and will probably be done
by the central processor. However, constant monitoring of the system by the
processor will burden the processor with overhead. Adding a separate hardware
interface that snoops the communication structure and logs the transactions for
occasional analysis by the processor might be useful in this situation.

These sophisticated algorithms can employ various learning techniques
found in neural network or genetic coding. Future development in this area
might result in a system tuning itself for optimal performance, regardless of
what application is running.
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From VC Interfaces to Parameterizable Interfaces
A major advantage of the VC interface is the parameterizable nature of the
interfaces to buses in the future. This will enable many different VCs to be eas-
ily integrated on a single bus. The bus side of the interface should contain the
bus wrapper parameterization, because there are many more VCs with slave-
type interfaces available than buses, and many are legacy VCs. These VCs can-
not easily be changed, so the VC interface should be relatively easy to adapt to.
On the other hand, the bus interface must be able to translate between many
different sizes of VCs, and, therefore, should have most of the parameteriza-
tion. This puts most of the development burden on the bus developers and VC
developers who are making initiators for the buses, but that is far less effort
than putting it on the legacy VCs.

There are many parameters to direct the generation of the wrapper, in addi-
tion to the actual signals on the VC interface, most of them on the master side
of the VC interface. These parameterized wrappers will include sufficient para-
meters to correctly generate logic for VCs that match the buses they are being
connected to, as well as VCs that are very different from the bus. Some of these
parameters will be related to the types of transfers that will be done across the
VC interface. For example, if only whole words will be transferred, the wrap-
per on the master side can eliminate the byte enables. In most cases, if a VC
with a small interface, such as 8 bits, is connected to a larger bus (64 bits), the
bus interface logic can do the assembly and disassembly of the data out of a
64-bit logical word, or only individual byte transfers can occur. A combina-
tion of parameters indicating the level differences across the VC interface and
application notes defining how extensions should be tied off are required for
correctly generating the logic for the VC interface. The master side will at least
be capable of connecting to slaves of any level that the master contains.

What's Next
As the industry moves from very large scale integration (VLSI) to SOC designs,
another layer of board-level interconnect is integrated onto the chip. About
every decade, the level of silicon integration grows beyond the capability of
the tools and methodology. Today’s level of integration allows for a critical por-
tion of the entire system architecture to reside on the chip. As a result, system
communication architectures and hierarchical reusable design methodologies
are needed to meet the SOC design challenge. Buses are the dominant struc-
ture for system communication. We now need to adapt these technologies to
chip design.
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Developing an
Integration Platform

As the industry demands faster time to market, more product flexibility, and more
complex designs with lower risks and costs, platform-based design (PBD) provides
advantages in meeting these requirements. An integration platform is generally
developed to target a range of applications. The breadth of applications targeted
depends on trade-offs made in the platform design, such as time to market, cost,
chip size, performance, and so on.

This chapter describes the structure of platforms, platform libraries, and the
methods for developing and qualifying virtual components (VCs) within those
libraries. It also explores the trade-offs that have to be made in developing an
integration platform.

In terms of the PBD methodology introduced earlier, this chapter discusses
the tasks and areas shaded in Figure 6.1.

Integration Platform Architecture

An integration platform, as discussed in Chapter 3, consists of a library of VCs,
a library of embedded software, and one or more hardware kernels for build-
ing derivative designs to use within the specified market segment for which
the platform was developed. This section provides an overview of the basic
architecture of an integration platform.

Hardware Kernels
The hardware kernel is the key difference between a block-based and
platform-based design. A hardware kernel must be central to the application
being implemented in the chip, because the control of the other VCs in the
design resides within the hardware kernel. A hardware kernel needs to contain

6
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one or more programmable VCs, buses, and VC interface ports. But these basic
contents provide no advantage of one platform design over another. To address
a specific market segment, additional components, such as a real-time operat-
ing system (RTOS), a platform-specific VC, and an interface to programming
code, should be included. The hardware kernel should also control the system
bus, system power, and test coverage to facilitate quick turnaround of derivative
designs.

For instance, an ARM and some on-chip memory, along with an AMBA
system bus, might work very well in a set-top box, but would also work well in
almost any other application. However, if you add soft modem code, a tuned
RTOS, the corresponding residual modem hardware, with enough data storage
to handle three HDTV video frames, it would work better for a set-top box
application than, for example, a cellular phone.

In addition, an additional VC interface must be available for testing a VC
that is connected to a bus, as discussed in Chapter 5, in order to connect the
transaction language behavioral model to the derivative design. Eliminating
the extra unused VC interfaces after the design has been verified can be part
of the physical implementation process.
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When creating a derivative, a hardware kernel should not be varied more
than is allowed by the hardware kernel’s specifications. For example, a hard-
ware kernel can be designed to work with one technology at one clock fre-
quency. If other platform VCs are connected to the hardware kernel to create
a derivative, the clock frequency or technology cannot be changed, because
there is no guarantee that the design will work.

If one or more elements within a hardware kernel needs to be varied for
multiple derivative designs, either the platform should contain different hard-
ware kernels to support each of the derivative designs, or the elements should
not be included within the hardware kernel in the first place. For example, if
the processor’s code size is known, the hardware kernel can contain a PROM.
However, if the code size varies widely among the platform applications, a
PROM should not be part of the hardware kernel, so that each derivative
design can choose one that is appropriate for it.

Conversely, a hardware kernel could be configurable, synchronous, and
implemented in a portable physical library such that it can work with a num-
ber of different configurations, at clock speeds up to some limit within two
or more processes. In this case, a derivative can modify the parameters within
the specified limits and still guarantee that the design will work. Elements
that are appropriate to make configurable include, but are not limited to, the
following:

Clock speed
Bus size
Size of queues within bridges and VC interfaces
Size of memories (code space, scratch pads, and cache)
Allocation of address spaces to each of the bus ports
Structure and priority of the interrupts
Relative priorities of the initiators on the hardware kernel’s internal buses
Number of technologies and processes the VC will work within
Amount of dynamic clock and power control
Availability of various levels of instructions

We will discuss other aspects of configuring hardware kernels in the engi-
neering trade-off section later in this chapter.

Platform Libraries
A platform contains a library of hardware kernel components for creating hard-
ware kernels, and a platform library consisting of one or more hardware kernels
and possibly other software and hardware VCs. Figure 6.2 shows the various
kinds of elements within the platform libraries.
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To add a VC to the platform library, it must be certified. This means the
VC’s collar must be modified to guarantee that it will work with all the other
VCs within the library. For software VCs, the code must be able to be compiled
to execute on at least one of the programmable elements in one or more of
the hardware kernels. The software VCs must indicate for which hardware ker-
nels they are certified.

All library components, including third-party intellectual property (IP), must
be qualified by running test suites with testbenches before adding them to
either the hardware kernel or platform libraries. Qualification can be done by
verifying the functionality within a derivative from this platform, as well as by
verifying the VC using its own testbench. Parameterized platform VCs are
included within a platform library after their degree of parameterization is lim-
ited, and the appropriate collars have been added.

Collaring
The different levels of VCs within a platform library are determined by the
type of collaring for reusability they have. Table 6.1 lists the attributes associated
with the following collaring levels:

General A parameterized VC that is usable in any design that needs the
VC’s function by specifying the appropriate parameter values. The
parameter space is usually too large to verify all combinations for
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functional correctness. Platform-specific collaring has not been applied
at this level.

Platform Specific Similar to general reuse, but the parameter space is limited
enough to be able to verify the VC’s functionality over the usable
parameter space.

Design Specific Design-specific VCs are applicable to a number of
implementations of a design, but are specific to a set of derivatives of similar
design. The collaring on these VCs is not hardened, though the VC itself
might be hardened. The parameter space is limited to performance and
encoding of interfaces, but the basic functionality options are predefined.
The wrapper is structured for general use for timing, test, and, layout.

Instance Specific Instance-specific VCs have been hardened through a VC
design process and can only be used by a specific derivative or revisions of
that derivative that does not affect the specific VC. The timing, layout, test,
and logical interface have been adjusted and glue logic included to fit in a
specific instance of the VC in a specific SOC design.

For the purposes of this chapter, we will deal with design-specific collaring.
We are assuming the VCs have not been cast in the target technology’s library
but have been specified down to register-transfer level (RTL).

Platform Models
Integration platforms have specific modeling requirements that the various
components within a platform library need to adhere to. To meet the quick
time to market requirements of derivative designs, hardware kernels, in par-
ticular, have hard implementations in the platform library. Peripheral hard-
ware VCs need only the instruction set, behavioral, and RTL models, because
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models of hardware VCs are the same at the architectural and instruction set
levels, and they do not have a netlist implementation. Peripheral software VCs
need only the architectural, instruction set, and behavioral models. The behav-
ioral level is binary code and does not change through RTL and physical
netlist. These assumptions will be used in describing the various characteris-
tics of platform models below.

Hardware kernels require five levels of models, as described below.
Hardware kernel component libraries must contain the same type of models
as required for a hardware kernel. In some cases, these models are pieces of
what will later be integrated into a hardware kernel model, in others they are
standalone models. For example, the most abstract level of the RTOS model
can include transaction-level communication with application software VCs
and the hardware VCs of the design. This is a standalone model that infers the
existence of the processor, while a set of binary code for the processor cannot
be simulated without the processor model.

Architectural
This functional model of the design consists of behavioral VCs, with no distin-
guishing characteristics between software or hardware modules, except the
assignment of the VCs. It executes the function of the design without regard to
timing. This model contains no clock, so scheduling that does occur within the
model is event-priority driven. Events are ordered according to the application
being simulated. The model is usually written in C or some architectural-level
language. I/Os to the testbench are done by passing information through a top-
level scheduler. Depending on the application and the architectural models,
whole data structures can be passed as data pointed to by the events.

Instruction Set
At this level, instruction set functional models of the processors are added to the
design. The event scheduling is brought down to the hardware VC communi-
cation level. The software modules are compiled into code for execution on
the processors. The memory space for the software applications is added to the
design. There is still no clock, and scheduling is done on an event basis, but the
data passed is now done at the message level. These models continue to be
written in C or some other high-level language. I/Os to the testbench are done
by formal message passing through the top-level scheduler. In the process of
refining this model, decomposition of the messages down to the packet level
can be done.

Behavioral
In the behavioral model, the design is translated into a cycle-approximate
model by adding a system clock to the model, and adding delay in each of the
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functional VCs that approximates the actual cycle delays expected in the imple-
mentation of the VC. The scheduler also has latency added to it, so each of the
packet-level events have an appropriate level of delay introduced for their tran-
sition from one VC to another. The same level of scheduling priority exists as
in the upper-level models. This model is usually written in a high-level lan-
guage that extends down to RTL, such as Verilog or VHDL. The interface
between the model and the testbench must also be converted to packet-level
transactions, with specific transfer times added.

RTL
At RTL, the design is translated from a scheduling of packets between VCs to
a specific set of hardware for the bus and other interblock communication.
Registers are added to store and forward the data as necessary. The packet-level
data is further decomposed into words and transferred in bursts equivalent to
the packet level. This model is an extension of the models above and is, there-
fore, usually still in Verilog or VHDL. The I/Os have also been translated into
specific signals. Data is transferred to and from the testbench on a cycle by cycle
basis across these signals.

Physical Netlist
At this level, the design has further been translated down to the gate level.
Actual physical delays are added to the design. The timing is now at known
increments of time, such as nanoseconds. Signals can arrive and depart at any
time within a clock cycle. This model is translated either into a gate-level rep-
resentation in Verilog or VHDL, or exists within EDIF, an industry-standard
gate-level format. The I/Os are individual signals with specific transition times
within a clock cycle.

Determining a Platform's Characteristics

Platforms are designed to serve specific market segments. Every market seg-
ment has distinct characteristics. We have reduced these characteristics to the
relative strengths of the following common factors:

Performance—from low to high performance requirements of the market
place
Power—from high to low power; low power is more critical
Size—how critical is the size, or from large to small die requirements
Flexibility—how much variation is there in the applications, from low to high
Technology—whether special technology is required, including processing,
packaging, IP, voltages
Reuse—how important is broad use of the platform VCs
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Figure 6.3 shows each factor on a separate axis, flattened into two dimen-
sions. The platform applicability is in the area bounded by the irregular closed
figure in the center.

The left example might reflect a hand-held wireless device, which needs to
be flexible to handle different applications. Small size is critical because of cost.
Performance is not critical, but low power is. Technology is moderate, because
some analog is needed. The need for reuse is moderately high, because the plat-
form VCs could be reconfigured to serve a number of different applications.

The right example might represent the desktop computing market segment.
Technology and performance are critical, but reuse and power are not. Some
flexibility is desirable, because these are computing devices, but only a few
derivatives are expected, so reuse requirements are low.

Implementing a Hardware Kernel

The hardware kernel component library, which is used to create hardware ker-
nels, consists of processors, memories, buses, software modules, operating sys-
tems, and other functional VCs that can interface to the bus. Each component
must have relevant models, source code or RTL, and a list of tools and other
VCs that they apply to. The component must have applicable tests to verify
functionality.

Hardware kernels can be created in the following ways:

Adding VCs from the platform library to an existing hardware kernel.
Connecting elements from the hardware kernel component library
together to create a kernel.
Adding one or more hardware kernel library elements to an existing
hardware kernel.
Deleting one or more VCs from an existing hardware kernel.

In the first three cases, the VCs must be qualified to verify that they work
within the platform.
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To create a hardware kernel from an existing hardware kernel, the original hard-
ware kernel must first be added to the hardware kernel component library, which
requires a qualification process. Then the new hardware kernel can be created. This
hierarchy allows hardware kernels within other hardware kernels. If access to the
hardware kernel’s VC interfaces is lost, the hardware kernel ceases to be useful in
derivative designs.When using a hardware kernel as a component in another hard-
ware kernel, the parameters available on the component hardware kernel should be
set to a specific functional configuration. Another approach is to flatten the com-
ponent hardware kernel into its subblocks and use them in creating the new hard-
ware kernel. This requires replacement, but can result in the proper ordering of the
physical VCs for using the functional parameters of the new hardware kernel.

During the development of the hardware kernel, the timing and area trade-
offs have already been made. In most cases, excluding the memory area, a hard-
ware kernel within a derivative should take up more than half the area of the
chip. A hardware kernel should have hard implementations to choose from
when creating the derivative.

Implementing a hardware kernel requires using a block-based design
approach, with additional modules added to address the platform’s specific
requirements. Some of these modules are described below.

Minimizing Power Requirements
Specific techniques can be used to reduce the power required in the hardware
kernel design.

Low-Power Fabrication Process
A number of semiconductor vendors offer lower power fabrication processes,
which reduce the leakage and totem pole current to a minimum by shifting
the thresholds of the p- and n- channel devices. They also reduce the leakage
current by increasing the doping levels of a standard twin tub process. This can
reduce the overall power by as much as one half of a normal process, but it also
reduces the performance by 10 to 20 percent.

Low-Power Cell Library
A low-power cell library contains all the normal functions, but includes a very
low drive. It can be used in small loading conditions. Low-power inverters on the
inputs of gates, distributed to the loads of large fan-out nets, can eliminate multi-
ple polarity high-power consuming nets, further reducing power consumption.

Orthogonal Single-Switching Macro Design
Many arithmetic functions are designed in a way that causes some nets to tog-
gle multiple times in a clock cycle. For example, a ripple-carry adder carry line
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can toggle up to n times per clock cycle for a 2n-bit adder. Adding additional
terms can eliminate this extra switching by selecting the final carry value only,
as occurs in a carry-select adder.

Active Clocking
There are two levels of active clocking. The first uses clock enables. The power
consumed in any CMOS design is proportional to the clock frequency.Within
a complex SOC design, not all units need to operate at the same time. To con-
serve power, those units that are not active can be “shut off” using clock
enables. Current design practice in full scan designs is to use data gating. In this
mode, the data is recirculated through the flip-flop until it is enabled for new
data. This takes far more power than gating the clock, and the further back in
the clock distribution structure the gating takes place, the less power is con-
sumed in the clock structure.When using this technique, care must be taken to
not create timing violations on the clock enables. The enable signal on data-
gated flip-flops has the same timing constraints as the data signal itself.
Unfortunately, the enable signal for clock gating must be stable during the
active portion of the clock, which requires that more stringent timing con-
straints be met by the enable signal.

The second level of active clocking is clock frequency control, in which the
original clock frequency of selected clocks is slowed down. Many parallel oper-
ations are not used or complete earlier than they need to in SOC design, but
because they must periodically poll for interrupts, they must continue to oper-
ate. In these cases, the operations could be slowed down, rather than disabled by
controlling the VC’s clock frequency. The hardware kernel’s clock control unit
should have independent frequency controls for each of the clocks being dis-
tributed to different subblocks in the hardware kernel. There are many design
considerations, including timing the design for the worst case combinations of
frequencies between units. Care must be taken to insure that the function is
invariant over all such combinations, which might require additional holding
registers to ensure that the data is always available for the next VC, which might
be running at a slower frequency.

Low-Voltage Design
The best way to reduce the power in a chip is to lower the voltage, since power
is a function of the voltage squared, or For designs that are not
latency-sensitive, the voltage can be lowered. This slows down the logic, requir-
ing a slower clock. If the bandwidth must be maintained, additional pipeline
stages can be put in the design to reduce the amount of logic between each
stage, resulting in the same bandwidth and clock frequency, in a substantially
lower power design. This alone can reduce the power below half of the origi-
nal chip’s consumption. Additional design must be done between the internal
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logic and the chip outputs, since the signals must be level shifted to avoid exces-
sive I/O current.

Active Power Management
Units that do not need to be active can be turned off completely, thus elimi-
nating the power loss during the off period. This is done by dropping the power
rail to ground for that unit only. Care must be taken to maintain any critical
states in non-volatile storage and to hold outputs at legal switching levels to
minimize totem pole current in the adjacent devices. Special scheduling and
reset circuitry must also be added, since it can take a large number of clock
cycles to bring up a VC that has been turned off.

Maximizing Performance
Several steps can be taken to increase the performance of a hardware kernel.

Translating Flip-Flops to Latches
Unlike flip-flops, latches allow data to pass through during the active portion of
the clock cycle. Latches allow the slow, long paths in a cycle to overlap with the
shorter paths in the next cycle. Figure 6.4 shows that the same logic between flip-
flops and latches is 25 percent faster in the latch path because of cycle sharing.

Staggered Clocks
In early microprocessors, it was a common practice to stagger the clocking of
registers to take into account the delays between the first and last bits in the
arithmetic function being executed. Typically, the first bit of any arithmetic
operation is a short logical path. In an adder, it is a pair of exclusive ORs; in a
counter, it is an inverter. On the other hand, the last bit often takes the longest.
In an adder and a counter, the carry path is the longest path and the last stage
is in the highest bit, as shown in Figure 6.5.

In this example, the clock can be delayed by adding a pair of inverters
between each bit in the registers, starting at the lowest bit. The staggered string
should not be extended for too many levels, because the clock skew can exceed
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the advantages of the skew. This is also more useful if the arithmetic functions
are iterative, since the data must be unskewed at I/Os, because buses and mem-
ories are not usually skewed.

High-Performance Design
Much of the detailed design implementation method is built into timing-
driven design methodology. This drives the synthesis of the design by the clock
cycle constraints of the paths, which serves to level the critical paths in the
design. If the design is not latency-sensitive, but requires high bandwidth, addi-
tional registers can be added to the pipeline in the design, reducing the amount
of logic and corresponding delay between the registers in the design.

High-Performance Architecture
Steps can be done at the architectural level to create high-performance designs.
The first is to select a bus that has the latency and bandwidth characteristics
necessary to meet the design’s performance objectives. The second is to dupli-
cate resources, as necessary, to parallel what would otherwise be serial opera-
tions. The third is more complicated. It requires reorganizing operations that
require serialization into parallel tasks by eliminating the serializing constraints.
For example, a serialized summing of numbers requires each number be added
to the total. This function can be modified so that successive pairs of numbers
are added together, with their corresponding sums added until the whole set of
numbers is totaled. This restructuring enables the second step of duplicating
resources to be executed. Refinements to this process can result in multiport
operations, such as memories, three port adders, and so on.

Minimizing Size Requirements
Certain tasks can reduce the physical size of the hardware kernel.
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Design Serialization
This process is the reverse of what is done in high-performance architectures.
Area is usually saved whenever duplicate resources can be combined by serial-
izing the resource. However, the wiring should not be increased so much as to
offset the gate savings.

Tristates and Wired Logic
In general, a set of multiplexor (MUX)-based interconnects is much faster than
tristates, but almost always takes up more area. One way to reduce size is to
replace any MUX-based switching structures with slower tristate-based bus
structures. However, the bus logic should be timed so as to minimize the peri-
ods when the bus is floating or in contention.

A second way to reduce area is to convert highly distributed fan-in/fan-out
structures into wired logic. For example, an error signal might come from every
VC in the design. These must be ORed together to form a system error signal
that must be broadcast back to all the VCs. For n VCs in the design, this struc-
ture would require n input signals, n input or gate, and an output with n loads.
This can be translated into a wired OR structure that has one wire and an I/O
from every VC, as shown in Figure 6.6. In this case, the size reduction is in the
wire savings.

Low Gate Count Design
This is the reverse of the low-power or high-performance design. To reduce
area, slower smaller implementations of arithmetic functions can be used. For
example, use a ripple-carry adder instead of a carry select, or a serial-addition
multiplier instead of a booth’s encoded fast multiplier.

Low Gate Count Implementation
This is the reverse of high-performance design in that the synthesis should be
done to minimize gates, and pipelining should only be used where absolutely
needed for performance. Similarly, powering trees should be kept to a minimum.
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Maximizing Flexibility
Flexibility can be achieved in two areas: in the amount of parameterization that
allows for greater configurability of the hardware kernel; and in the use of pro-
gramming to allow more variety of applications in the hardware kernel.

Configuration
Soft configuration or parameterization can be used to configure a system. Soft
configurations include configuration registers in the design to select the vari-
ous function options. These options should be set during bring-up and
changed via RTOS commands from the processor.

Parameterization can take on two different forms. It can be used to drive
logic generators, or it can be used to select options that already exist within
the design. Both parameterization approaches should be defined by key word,
but the latter form means the key words translate into tie-off conditions for
the selection logic. Hard VCs can only be configured by this approach. All
options that are parameterized must be qualified. At a minimum, a hardware
kernel should have parameterized VC interfaces. The VC interface parameter-
ization should be at least as broad as the capabilities of the bus to which it is
connected.

Design Merging
When two similar designs are merged, they can include two or more functions
and MUX-selecting between them. Design merging can also generalize two
or more dedicated designs by abstracting their common datapath and devel-
oping merged state machines that execute each merged function based on the
value of the configuration bits. The parameterization of this approach is simi-
lar to soft configuration, where the configuration signals are driven by flip-flops
rather than tie-offs. In another mode, the configuration bits could be hard-
wired, as in the parameterization option described in the “Configuration” sec-
tion above. If the VC is not yet hardened, synthesis should be run to eliminate
the unused logic cut off by the configuration state. In this case, the merged VC
should be designed to maximize the elimination of unused logic, which can
be done by minimizing the amount of unused logic that is driven by and dri-
ves flip-flops in the design.

Programmable Elements
Programmable elements can include everything from traditional field pro-
grammable gate array (FPGA) logic to processors. The general control proces-
sor provides greater flexibility and ease of modification, while the FPGA
provides more performance for a more limited range of applications. This is
because execution of applications in the processor is mostly serial, while exe-
cution of the applications in the FPGA is mostly parallel. Also a traditional
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FPGA’s configuration is only loaded once at each system reset, while the
processor can load different applications as needed. Digital signal processors
(DSP) and other special purpose processors, as well as dynamically reconfig-
urable FPGAs, fall in between these two extremes. The selection of the type of
programmable elements is done at the architecture phase of hardware kernel
development.

Hardware to Software Mapping
A hardware kernel is more flexible if it allows more programmable options. To
the degree that VCs are included in the hardware kernel, they may be imple-
mented as application programs rather than hardware VCs. This selection
process is done at the architecture phase of developing a hardware kernel.

Timing Requirements
The hardware kernel must have accurate timing models at the physical level,
except for the additional soft collar logic, which can be timed during integra-
tion. The peripheral blocks need only models accurate to the clock cycle and
some estimated delay for the I/O paths.When implementing the hardware ker-
nel, the external peripheral block designs must have sufficient delay to enable
the hardware kernel’s internal bus to function properly.

Typically, the hardware kernel is hardened with soft logic for the collar. If
the unused ports to the internal buses can be removed, the timing models for
the hardware kernel should include parameters for the number of used ports,
since the upper bound of the operating frequency of the bus is related to its
loading.

Clocking Requirements
The hardware kernel must generate the clocks required for a derivative design
and distribute those clocks to the other VCs in the design. The hardware ker-
nel must clock the peripheral VCs because the devices need to be clocked in
relationship to the processor and system bus, and the frequency control has to
be available beyond the processor for the derivative to work.

In the implementation of a derivative design, the hardware kernel takes up
half the chip, with uncontrollable blockages on all routing layers. At the top
level of a derivative design, the routing from one side of the hardware kernel to
the other is a problem. Where the external blocks will connect with the hard-
ware kernel is known, and in most derivative designs, all the other VCs connect
to the hardware kernel. Therefore, providing the clock to the VCs from the
hardware kernel is much easier and safer from a skew consideration than try-
ing to match the skew from a global clock. Since the hardware kernel is so
much larger than the other VCs, routing the clock around it would require a lot
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of padding on the clock to the peripheral blocks. This would increase the skew
well above a flat clock distribution system, so a clock system distributed through
the hardware kernel makes the most sense.

The clocking requirements for the peripheral block designs do not require
a built-in clock structure, because they are mostly in RTL form. Therefore, the
clock structure within a hardware kernel should fan out to the VC interface
ports first, and then branch to the specific regions of the VC. This provides an
early clock to further minimize the clock skew between the peripheral com-
ponents.

Transaction Requirements
A hardware kernel must have at least two VC interfaces. The bus within the
hardware kernel must be designed to handle all or none of the VC interfaces.
Every VC with a VC interface must have some compliance test suites, which
are written in a relocatable form of the transaction language for the VC inter-
face, to verify the underlying VC. The VC interfaces on the hardware kernels
must be flexible enough to handle the interface requirements of most of the
peripheral blocks in the platform library.

All peripheral VCs should be designed with sufficient buffers and stall capa-
bility so that they operate in an efficient manner if the bus is not at the same
level of performance as the datapath. Regardless of which frequency the system
and any specific peripheral block is operating at, the design must still function
correctly

Physical Requirements
A hardware kernel must be implemented in hard or firm form, and the collar
should be soft. The hardware kernel should target an independent set of multi-
foundry libraries or have an adjustable GDSII file available. If the hardware ker-
nel is firm, the clock structure should be pre-routed according to the clocking
requirements. The test logic and I/O buffering logic in the collar should be
initially soft, to allow some flexibility during place and route. Space should be
allocated for this collar, including the possibility of sizing the I/O buffers to
reduce the delay between VCs.

Test Requirements
Each block, including the hardware kernel, should have sufficient observabil-
ity and controllability so that it can be tested in an efficient manner. Test logic
must be included to be able to isolate and apply test cases that verify the design
on a block by block basis. The collar should include the boundary scan for the
block as well as the access method for the test logic within the block. This logic



Developing an Integration Platform 141

should be structured to allow easy integration with other VCs and the test
access port at the chip level.

Hardware kernels with processors should have some additional test mecha-
nisms to allow loading and using any internal memory within the hardware ker-
nel or external memory through a VC interface and to execute diagnostic
programs to check out the processor, the system bus, and as much of the opera-
tion of the peripheral VC as is reasonably possible. This on-chip diagnostic capa-
bility enables large portions of the hardware kernel to be tested near or at speed.
These types of tests can detect timing-related faults, as well as structural faults,
that are normally caught with scan-based approaches. In addition, some method
for directly accessing the system bus, in conjunction with the boundary scan of
the peripheral VCs, can be used to test the functionality of the peripheral VCs.
This is especially useful if the peripheral VC has no internal scan test capability.

Power Requirements
Each hard VC’s power and ground distribution should be structured to do the
following:

Distribute the maximum power the VC can use
Not exceed the metal migration limits of the process
Not exceed one-fifth of the allowable voltage drop for the entire power
distribution structure
Connect to external power and ground rings easily

Hardware kernels might require two levels of power distribution, because
of the wide variations in maximum power requirements for the different sec-
tions of the design. This two-level structure should have major wires between
each of the subblocks, and some grid-like structures within each subblock sec-
tion of the design. Verification of the power distribution structure can be done
with commercially available power simulation tools.

Instance-specific VCs include power and ground rings around them, because
the VC’s position within the overall chip and the chip’s power grid structure are
known.

Software Requirements
All software modules must be associated with one or more operating systems
and processors. Hardware kernels must include references to one or more oper-
ating systems that have been qualified to run on those hardware kernels. The
operating systems must include drivers for the devices that exist on the hard-
ware kernel as well as shell drivers for the interfaces. The operating system
requirements also include being able to handle (either through parameteriza-
tion or in the actual tables) all of the interrupt levels available in the processor.
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The application software modules must be either in source or in relocatable
binary object code. Test cases should exist to verify the functional correctness
of the software module. If the software is in source, it must be certified to com-
pile correctly. If the software is in object code, it must be certified to properly
load via a defined link and loader. Ideally, the software should use a standard
interface definition for passing parameters. This enables creating a parameter-
izable top-level module that can be configured to fit any application by itera-
tively calling the underlying software modules. In the absence of such a
top-level module, an example application or testbench could be reconfigured
to create the derivative designs. Hardware kernels must also have some diag-
nostic software test suites to verify the proper function of the programmable
elements within the VC.

Verification Requirements
Much of the verification requirements of a derivative design can be obtained
from the model levels described earlier. Additional testbenches are required
for the VCs, ideally in the transaction language, so they can be reused in the
integrated derivative design. Hardware emulation, or rapid prototyping, is a
commonly used verification technique, but it requires an additional model
view.

If rapid prototyping is used in the derivative design, building a board-level
version of the hardware kernel, with the bus at the board level connecting to the
VCs that reside in separate chips as shown in Figure 6.7, is the most efficient
way to do the emulation. Peripheral designs in FPGAs can then be connected
to the board-level bus. When this is done, both sides of the VC interface reside
within the FPGAs. This requires mapping from the existing hardware kernel
design to one that does not contain any VC interfaces. The hardware kernel’s bus
is routed around the rapid prototyping board to each of the FPGAs. Each of the
FPGAs has the VC interface to bus wrapper in parameterized form. When the
derivative design is emulated, the peripheral VCs’VC interfaces are connected
to the FPGA VC interfaces.

Additional ports on the board-level bus can be used to access the whole
design for observing and initializing the design. If the peripheral components
are memory VCs that exceed the capacity of the FPGA, the FPGA will just
contain the translation from the bus to the memory protocol, with the mem-
ory external to the FPGA. Some facility for this possibility should be designed
into the hardware kernel rapid prototype. It can be a daughter card bus con-
nector assembly, or an unpopulated SRAM array on the main board. SRAM is
preferred in this case, because the emulation of other types of memory can be
done in the FPGA interface, but SRAM cannot be emulated by the slower
forms of memory.
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Engineering Trade-offs

This section explores how to decide when to employ the various techniques
used to design VCs and hardware kernels.

Performance Trade-offs
Blocks in the platform library should be designed to allow the widest range of
clock frequencies possible. This is easier to achieve with the smaller soft periph-
eral VCs, because synthesis can tune the VC for the desired performance. The
hardware kernel must be over-designed, because it should be hardened for
quick integration into derivative designs. In general, these designs should be
synchronous with as much levelization of the long paths as possible. It is more
important to design the hardware kernel to the required performance levels
needed in the derivative designs than the peripheral VCs, because the perfor-
mance of the derivative design is determined by the performance of the hard-
ware kernel. The peripheral VCs also often have less stringent performance
requirements.

The system bus should be over-designed to provide more than three times
the bandwidth than the expected configurations require. The reason for this is
that the hardware kernel should be designed with more VC interface ports than
needed in the anticipated derivatives, in case they might be needed. If the extra
VC interfaces get used in a derivative, more bandwidth will be required. The
additional loading reduces the top frequency the design can operate at, which
has the effect of lowering the bandwidth of the bus.

The processor should also be over-designed, or the interfaces to the bus
should be designed to allow for wait states on the bus, because the most lightly
loaded bus configuration might be able to run at a frequency above the normal
operating range of the processor. If the clock frequencies are configurable
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within the VC, the wait states can be employed. Otherwise the hardware ker-
nel’s performance is bound by the processor, not the bus.

The memory configuration is a critical part of the system’s performance.
Different applications require different amounts of memory. Usually, it is better
to keep larger memory requirements outside of the hardware kernel, using cache
and intermediate scratch pad memory to deal with fast iteration of data.
Unfortunately, memory that is external to the hardware kernel usually requires
more clock cycles to access than memory that is internal to the hardware kernel.
In general, slower memory, such as DRAM or flash, should be external to the
hardware kernel, whereas limited SRAM and cache should be internal. The bus
interfaces to the memory that is internal to the hardware kernel should be tuned
to eliminate any extra clock cycles of latency to improve the system performance.

Every hardware kernel should have at least one function that is specific to
the platform that the hardware kernel was designed for. If it is a hardware VC,
it is usually some number crunching datapath design, which is replacing soft-
ware that would do the same job, only slower.

Given the variety of technology options available to the user, make sure that
the hardware kernel operates correctly. Different semiconductor processes cre-
ate different performance variations between memory and logic. DRAM
processes provide space- and performance-efficient DRAMs, but the logic is
much slower than in a standard CMOS process. All the devices that reside on
the bus should be designed to stall, and the bus should be able to allow the
introduction of wait states to ensure that the hardware kernel functions cor-
rectly, regardless of the technology used to implement it.

Sizing Trade-offs
A number of architectural decisions can significantly affect the size of a deriv-
ative design. Size can be most significantly affected by whether the proper
amount of the right type of memories are used in the design. It is best to leave
the larger slower forms of memory outside the hardware kernel, because they
will need to be tailored to the specific application’s requirements.

It is more cost-effective if a hardware kernel can be applied to as many
derivative designs as possible. One way this can be accomplished is to over-
design the hardware kernel with all the memory, processors, and special com-
ponents that the derivatives for its platform would need. Unfortunately, the
hardware kernel would be too big for most of the derivative applications. On
the other hand, it is impossible to use a hardware kernel that has less than the
customer’s required options. It is, therefore, more size-efficient to create a
number of options either through parameterization or by creating a family of
hardware kernels, some of which have limited options, such as internal mem-
ory size, bus size, number of processors, and number of special components.
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Then, the chip integration engineer can choose the hardware kernel that is
closest to but greater than what is required.

Designing Hardware Kernels for Multiple Use
The best solution for addressing size issues is to use a combination of para-
meterization and multiple hardware kernels. The more parameterized the
hardware kernel is, the larger the amount of logic that must be soft, to either
synthesize away the unused portions or drive the generators to build the
hardware kernel without the unwanted options. This results in more imple-
mentation work during the platform integration of the derivative design. If
the hardware kernel is mostly hard, the excess parameterization results in
poor performance or excessive size. The large number of options also creates
a problem, since all the options must be verified to qualify the design. If the
verification is not done, there is an increased risk that the derivative design
will not work, thus increasing the verification and debug effort.

If there is too little parameterization, it is more likely that the hardware ker-
nel would not meet the derivative’s requirements, resulting in additional design
work to modify the hardware kernel to meet the derivative’s requirements. If
the hardware kernels are not parameterized, more of them are required to effi-
ciently cover the platform’s application space, which is more up-front work for
the platform developer.

A trade-off must be made between the degree of parameterization and the
hardware kernel’s coverage of the platform’s design space. The ideal solution is
to design the underlying parameterization of the hardware kernel as generally
as possible and limit the options available to the user.

Since the hardware kernel has a lot of options, one or more will fit the
peripheral VC’s interface, thus reducing the verification requirements for the
peripheral VCs. New hardware kernels can be quickly implemented, because
the only work is to create a new user option and verify it. A trade-off exists
here as well: although it is usually less work to verify a peripheral VC than a
hardware kernel, there are many more peripheral VCs than hardware kernels in
the platform library. Lastly, general parameterization is often easier to design
than specific options, because the underlying hardware kernel components can
be used, it can be done locally, and the logic can be hierarchical.

For example, an interface can be optionally added to the hardware kernel at
one level, while a FIFO can be optionally inserted in the interface locally at a
lower level. The local option could have been previously defined as part of the
parameterization of the interface itself. User options are then preconfigured
sets of values for all the general parameters defined in the design. To provide
sufficient flexibility while limiting the options, the external options should be
broken into two types: functional and interface.
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Functional options add or subtract specific functional capabilities in the
hardware kernel design. The hardware kernel is implemented with these func-
tional capabilities as hard subblocks within the hardware kernel itself. The
options can be eliminated as necessary, without having to be soft. These options
should be limited to subblocks, preferably on the physical corners of the hard-
ware kernel, to minimize the raggedness of the resulting rectilinear shape,
although this limits the number of reasonable options.

Interface options are implemented in the soft collar, and can be more flexi-
ble without incurring the size penalty of hard subblock elimination. The inter-
face logic can be verified locally, since its scope is local and only needs to be
verified for one instance, although many might be present in the design. For
example, a hardware kernel has many copies of the VC interface, yet only one
instance of each type, master, and slave needs to be qualified, providing they all
connect to a common bus in the same manner. Also, if the hardware kernel’s
VC interface has sufficient options that cover all the interfaces of the peripheral
VCs in the platform library, parameterization of the VC interfaces of the periph-
eral VCs is not necessary. To make this trade-off, use the following process:

1.
2.
3.

4.

5.

Set K = 1.
Sort all of the peripheral VCs by their VC interface options.
Eliminate all VC interface options used by only K or less peripheral VCs.
The remaining options define the parameterization set for the VC
interfaces in the hardware kernel. The peripheral VCs eliminated must
have their VC interfaces parameterized to meet at least one of the VC
interface options in the hardware kernel.
Estimate the amount of qualification necessary for the peripheral VCs and
hardware kernels.
If the cost of peripheral qualification > cost of hardware kernel
qualification, increment K, and go to step 2.

A similar process can be used to determine how many hardware kernels
must be created versus how many options each VC should have.

Incremental Versus Initial Library Construction
While a platform can be created from an abstract analysis of the requirements
of a market segment, the risk is much lower if specific designs within that mar-
ket segment are analyzed. The common elements in these designs form the
basis for hardware kernel definitions, and the rest of the elements form the ini-
tial basis for peripheral VC definitions. If a hardware kernel library does not
exist, the elements defined in the hardware kernel definitions form the basic
elements for that library as well.Work can and should begin on both the com-
ponent and platform libraries, but pragmatic business requirements often result
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in contracting derivative designs that require VCs that are not in the library.
After concluding that the derivative design does indeed belong within this plat-
form, the derivative’s requirements further define the elements that must be
added to the platform library. In this way, the platform library is incrementally
expanded to cover the intended market segment.

Moving Forward

The notion of an integration platform is just beginning to be developed today.
At the board level, some platform designs have already been used. The deci-
sion to create a motherboard delineates the board level hardware kernel from
the peripherals. Still, using this approach is just beginning at the chip level. In
this section, we look beyond the simple, fixed, single processor-based notion
of a hardware kernel and explore the types of parameterization and program-
mability that could be created for a hardware kernel.

Parameterizing VCs
Many of the functions of a hardware kernel can be parameterized, ideally sep-
arate from the interface protocol. Because all the elements of a hardware ker-
nel are optional to some degree, the physical hardware kernel should be
organized to allow for the most likely options; that is the most likely options
should be on the corners and edges of the VC. Other rules to consider include:

Memory used exclusively by an optional processor or other VC should be
outside that VC.
The bus should partition the design in a regular fashion if the bus size is
expandable.
Protocol options should be soft if possible, or require little logic to implement.
Memory should be expandable on the hardware kernel’s edge or corner.

For example, if a hardware kernel contains a scratch pad memory that is solely
used by a co-processor within the design, the memory should be outside of
the processor or at least occupy an equivalent amount of the hardware kernel’s
edge. An expandable bus can have the number of address and data lines
increased or decreased. The bus must span the entire VC in the vertical and/or
the horizontal direction, so that the movement of the subblocks does not cre-
ate gaps with respect to the other subblocks in the design.

Some of the protocol examples include: VC interfaces definition, which
should be soft configurable wrappers, implemented in the collar; interrupt lines
and priorities, which can be hard-coded and tied-off, or implemented in the
collar; and arbitration logic, which, if centralized, should reside on an edge, oth-
erwise it should be part of the collar.
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Figure 6.8 shows a preferred placement of a parameterized hardware ker-
nel before and after parameterized options have been applied. In the before
view, all the options are in a standard configuration. The interrupt and VC
interface logic is soft and in the collar of the VC. The scratch memory is con-
nected to the co-processor. The buffer memory is associated with the appli-
cation-specific block, and the I/O devices are ordered so the optional one is
on the outside.

The original hardware kernel is rectangular, but by eliminating the co-
processor, its memory, a VC interface port, and an I/O option, along with dou-
bling the bus size, adding cache, and reducing buffered memory, the shape
changes to a rectilinear block. In the original, the bus had two branches, but one
was eliminated. This is acceptable, because the aligned, rectangular blocks can
still be packed without creating wasted space. If the VC interfaces are hard-
ened, eliminating one of them would create an indent in the resulting hardware
kernel, which if small enough, would become wasted space. Options resulting
in small changes in the external interfaces of a hardware kernel are better done
as soft collar logic, unless the operation of the logic is so timing critical that it
requires a specific physical structure.

This example is not necessarily the best or the only way of organizing the
hardware kernel. If the buffer and scratch memories were combined across the
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whole edge of the hardware kernel, and the I/O and co-processor were
arranged on the other edge, the result might have remained almost rectangu-
lar, but performance limitations might prohibit such organization. Still, it is a
good idea to include the limitations of the placement of the hardware kernel
when analyzing how much parameterization the VC should have. Usually, the
more rectangular the resulting shape of the hardware kernel is, the less likely
there will be wasted space in the derivative designs that use it.

Configurable Platforms
In the future, platforms will contain one or all of these programmable or con-
figurable structures:

Classic stored programs that serially configure a processor that executes
them
Reconfigurable logic, including FPGAs
Soft, configurable, semi-dedicated structures, which we call configurable
functions

Reconfigurable Logic
Depending on the speed and frequency of reconfiguration, reconfigurable logic
can have many different implementations, some of which are discussed below.

Slow Reconfiguration
Slow reconfiguration, at 10s of milliseconds, should be used only on bring-up.
This is similar to the existing reprogrammable FPGAs today, such as the older
versions of the Xilinx 4000 series. This configuration is useful as a prototyping
vehicle and is generally loaded serially from an external ROM or PROM.

Fast Reconfiguration
Use fast reconfiguration whenever a new function is required. At 10s of
microseconds, it is fast enough to have a number of configurations in external
memory and load them when a new type of operation is requested by the user.
The operation itself is still completely contained within the programmable
logic for as long as it is needed. For example, the Xilinx 6200 series has a pro-
gramming interface that looks like an SRAM, and it has the capability to load
only parts of its configurable space at a time.

Instant Reconfiguration
Use instant configuration, which is 10s of nanoseconds, during the execution
of a function, as required. Logic can be cached like programming, and parts of
a process can be loaded as needed. In this case, the bus must contend with a
significant bandwidth requirement from the reconfigurable logic. However, this
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type of hardware is flexibly configurable to handle any operation. This ulti-
mately leads to compiling software into the appropriate CPU code and recon-
figurable hardware, which can later be mapped into real hardware, if necessary.
Examples of this can be found in the current FPGA literature.1

Configurable Functions
Configurable functions are usually programmed by setting configuration reg-
isters: I/O devices are often designed to be configured to the specific type of
devices they communicate with; arbitration and interrupt logic can be config-
ured for different priorities; and a clock control system can be configured for
different operating frequencies. Here, we will focus on functions that can be
configured during the device’s operation, as opposed to hardwiring the con-
figurations into the devices before or after synthesis. The latter approach was
discussed in the parameterization sections earlier.

Figure 6.9 shows the relationship of the different types of programmability
to performance. The left graph, which assumes an equivalent on-chip area,
shows the relationship between flexibility and performance. That is, the num-
ber and sizes of applications that can be executed versus the speed at which the
application can execute after initial loading. A stored program is the most flex-
ible, since it can handle any size application and do any function without the
need for complex partitioning. For the various forms of re configurable logic,
the speed of reconfiguration relates to the ease with which reconfiguration can
be considered part of the normal execution of an application. Instant recon-
figuration means the application can be broken into many smaller pieces, thus
providing more flexibility, but since it is logic, it provides more performance
than a stored program. Slow reconfiguration limits the flexibility partially

1. Steve Trimberger, “Scheduling Designs into a Time Multiplexed FPGA,” International Symposium on Field

Programmable Gate Arrays, February 1998; Jeremy Brown, et al., “DELTA: Prototype for a first-generation

dynamically programmable gate array,” Transit Note 112, MIT, 1995; and Andre DeHon, “DPGA-coupled

microprocessors: Commodity ICs for the early 21st century,” IEEE Custom Integrated Circuits Conference, 1995.
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because of the slow reconfiguration, but has somewhat less overhead, so the
size of the logic for the equivalent area is larger than instant reconfigurable and
hence performs better than the instant reconfiguration, which must swap more
often. Configurable functions and hardwired functions are severely limited in
flexibility, but have less performance overhead, so are faster.

The right graph shows the relationship between the amount of silicon area
dedicated to the programmability versus the performance of the functions that
can be run on the different options. The hardwired approach has almost no
overhead; it might have some reset logic, but little else. The configurable func-
tions have some registers, whereas hardwired would only have wires. The
reconfigurable options must have programming logic, which is serial for the
slow reconfigurable function and parallel in the fast option. For the instant
reconfigurable, the programming logic must also manage multiple cache line-
like copies of the configurations, but the processor that executes the stored pro-
gram must be considered almost entirely overhead, except for the execution
unit, for managing the programming.

Figure 6.10 shows the relationship between the cost and performance for
each type of programmability. The left graph shows the relationship of the
application overhead to performance, which can be viewed as the area per
usable logic function in the application. Since the stored program’s processor is
fixed in size and can handle, via caching, any size application, it has little appli-
cation overhead internal to the programmable VC. At the other extreme, hard-
wired logic is all application, and every addition of functionality requires more
logic. The configurable function is somewhat less because a number of options
are combined, so the area is less than the sum of the separate functions, but
they cannot all be run in parallel as in the hardwired case. Slow reconfiguration
requires a larger array to effectively run large applications. Instant reconfigura-
tion has less overhead for the application, so it can more effectively reuse the
programmable logic.

The graph on the right compares the cost of storing the programming.
Stored programs use more memory as the application grows, but most of the
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cost is in the processor, so the slope of the top line is nearly flat. Each of the
other options requires more hardwired logic as the application grows, down to
totally hardwired. Instant reconfiguration is incrementally more cost-effective
than slow reconfiguration, because the program or logic maps can be stored in
less expensive memory outside of the FPGA logic, whereas the slow must con-
tain the application.

Note that these graphs overly simplify a relatively complex comparison.
Specific cases might not line up as nicely, and the scales might not be exactly lin-
ear. For example, FPGAs typically require 20 to 50 times as much area per usable
gate than hardwired logic, so an application that requires 1,000 gates is one-
twentieth the cost in hardwired logic. The curve does not appear as steep as sug-
gested in the last graph above, but considering that far more than ten functions
can be loaded into the FPGA VC, the effective cost for the gates in the FPGA
could be less than in the hardwired case. Similarly, the spacing of the various
programmable options on the graphs is not linear as implied on the graphs. In
fact, the difference in performance between instant and slow re configurable
logic, not including loading of the configurations, is very similar and consider-
ably faster than the stored program, because the execution is in parallel rather
than serial. On the other hand, the hardwired and configurable function options
are very similar in performance, but as much as two to five times faster than the
reconfigurable options.

The graph in Figure 6.11 is probably a better picture of the complex rela-
tionship between the performance and functionality of the various devices. The
relative performances might be off, but the relationships are correct. This graph
assumes that each structure has the same silicon area, not including the external
program space, and that the initial configuration was loaded at bring-up.

The hardwired has the highest performance, but can only execute when the
application can fit in the area. The same is true for the configurable function,
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but the dip in that line is due to the cost of reconfiguring. The same is true for
all the reconfigurables. Each has a dip in performance when the application
size exceeds the capacity of the configuration space. The second dip in the
instant reconfigurable is when all its internal configuration spaces are exceeded.
The stored program has a dip when the application size exceeds its cache size.
The broad bands for performance indicate the variation of performance the
devices might have. The processor might have more or less cache misses
depending on the code. The instant reconfigurable might execute out of its
cache for sufficient time to reload, or it might experience a large cache miss and
stall waiting to load the next configuration. The fast and slow reconfigurables
will stall, but for how long relative to the execution depends on the application.

This leads to some conclusions about the trade-off between different types
of programmability. In general, well-known small applications with high per-
formance requirements should be hardwired. Similar applications with specific
variations and/or options that might not be known at the time the chip is cre-
ated should be cast as configurable functions. This is one option of the config-
urable function; the other is to hardwire the options if they are not needed
during execution of the design.

At the other extreme, if there is a need to run a wide variety of applications
of different sizes, some of which are quite large, and they contain a very high
amount of control logic branching, the preferred solution is the stored pro-
gram processor. RISC machines should be chosen for predominately control
operations, while DSP could be chosen for more number-crunching applica-
tions. If more performance is required, the size and number of applications are
more limited, and the functions are more data-manipulation oriented, a vari-
ety of levels of reconfigurable logic should be chosen. The more the application
can be broken into small self-contained functions that do not require high per-
formance when swapping between them, the lower the speed of reconfigura-
tion needed. For example, for a multifunctioned hand-held device that has
GPS, modem and voice communications, and data compaction, but each one
is invoked by a key stroke (100s of milliseconds), the slow reconfigurable might
be the most appropriate. But if a hardwired solution was needed because of
performance, but the applications vary widely and have a wide variety of con-
trol versus data requirements, the instant reconfigurable option might be the
only one that can do the job.

In the future, hardware kernels will have some mixture of these configurable
options. Thorough analysis is necessary to determine how much, if any, is
appropriate for any specific hardware kernel. In the next chapter, we continue
this discussion from the perspective of implementing a derivative design.
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Creating Derivative Designs

As discussed in the previous chapter, the key to platform integration is the exis-
tence of a platform library containing qualified, collared virtual components (VC).
This chapter describes methods for successfully creating and verifying a derivative
design. In terms of platform-based design (PBD), this chapter addresses the tasks
and areas shaded in Figure 7.1.

7
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The Design Process
To create a derivative design, a specification is needed, which can require sig-
nificant system-level simulation prior to implementing the derivative design.
The technical requirements for the design, such as the package, pin out, and
external electrical requirements, must also be defined. Then the design must
be mapped to an existing set of VCs within an existing platform library that
encompasses the defined technical requirements; otherwise, the selection of
VCs from the library will not meet the derivative requirements. The end result
is a top-level netlist that specifies the platform VCs to be used in the derivative
design.

The platform library contains all of the necessary models and block-level
testbenches, but a top-level testbench must be created before or during the
mapping process to verify the correct implementation of the design. This
implementation produces a set of test vectors and the mask data necessary to
fabricate and assemble the derivative design. The testbenches and models can
be modified to create a rapid prototype to verify the design before implemen-
tation, and to debug the system after the derivative chip is integrated.

Figure 7.2 is an example of the structure of a derivative design. The hardware
kernel, which is enclosed in the dark line, contains VC interfaces in the soft
collar (the area surrounding the hardware kernel). These are connected to the
internal bus (multiple-grouped lines), which is distributed in the hard block
(shaded in dark grey). The subblocks are arranged within the hardware kernel.
Around the outside of the hardware kernel are peripheral VCs with their col-
lars and their corresponding VC interface wrappers. The clock structure is dri-
ven by an analog phase locked loop (PLL). Together these make up the
derivative design. Not all the VC interfaces on the hardware kernel are used
(see top of diagram), and other interfaces besides the VC interface can have soft
collar logic as well (interrupts).
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Creating a derivative design involves the phases shown in Figure 7.3. Front-
end acceptance is similar to the process in block-based design addressed ear-
lier. During system design, the architectural design is created and mapped to
a set of platform VCs. Hardware design includes design planning, block design,
and the chip assembly processes. In software design, the software components
are designed and verified. Verification is an ongoing process throughout the
development of the derivative design. All of these processes are discussed in
more detail in this chapter.

Front-End Acceptance
Front-end acceptance is the process of reviewing the requirements specified by
the user or customer of the design, and estimating the likelihood of meeting
those requirements by following the platform integration process. Some of the
analysis, such as determining whether the performance and power requirements
can be met or whether packages exist for the pin or silicon requirements, can be
answered based on knowledge of the available technology and experience with
similar designs. Some of the critical requirements might require further analysis
or “dipping.”

Dipping, as shown in the flow chart in Figure 7.4, involves doing some of
the tasks of system, hardware, or software design on a specific set of require-
ments to ensure that the derivative design can be constructed. The tasks can
include some of the mapping and hardware implementation of a subsection of
the design. Generally, though, as little as is necessary should be done in this
phase.

If the design does not meet the specifications, the integrator returns to the
customer requirements phase to obtain revised requirements for creating the
derivative design.
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Selecting a Platform and VCs
After it is determined that the design can be created, the system design phase
begins. This step includes refining the system’s requirements into an architec-
ture. This step, function-architecture co-design, starts with abstract functional
and algorithmic models, high-level views of an SOC architecture, a mapping of
the behavior to that architecture, and performance analysis in order to validate
and refine the design at a high level. This process can be facilitated with per-
formance modeling tools.

After the appropriate architecture is determined, the integrator must map the
architecture onto a platform and select the VCs within that platform to imple-
ment the derivative design. Depending on the platform level selected, many of
the VC and architecture choices might have already occurred as part of the plat-
form definition. Platforms are defined to serve a specific market segment, so the
integrator must select those platforms that cover the market segment served by
the target design. There might be many platforms that cover the market segment.
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Platform and Derivative Characteristics
Some of the derivative design’s requirements can be analyzed using the six
characteristics shown in Figure 7.5. Five of these characteristics and how they
apply to platform VCs were described in the previous chapter. The sixth, time
to market (TTM), replaces reuse, since the derivative design is not being imple-
mented for reuse, although it is related to TTM. The primary measure of TTM
is the schedule to create the derivative design, which is primarily a function of
the complexity of the design and the applicability of the VCs within the plat-
form library. The more generally reusable the VCs are, the more work that must
be done at integration, so reuse and TTM are inversely related. A missing fac-
tor is the derivative’s cost, because it is a function of all the other factors. The
higher the performance, power, technology, flexibility, size, or TTM require-
ments, the higher the cost of the resulting derivative. Therefore, cost can be
viewed as the area within the shapes shown in Figure 7.5, given the proper
scaling of each of the characteristics.

To select the proper platform from those with the same market segment,
compare the platform’s characteristics as described in the previous chapter, with
the derivative’s requirements shown here. When comparing Figure 7.5 to the
diagrams in the previous chapter, the requirements are similar, except that TTM
and size do not match. A high TTM requirement corresponds to a low reuse
requirement for the hardware kernels in the platform. The size requirement of
a derivative corresponds to its expected size, while the size factor for a plat-
form corresponds to how critical size is.

Selecting a Hardware Kernel
When selecting a hardware kernel, all of the requirements should be evaluated.
For example, in the diagram to the right in Figure 7.5, the derivative has high
performance, large size, and short TTM requirements for the application, as
compared to lower power, small size, and lower performance requirements with
moderate TTM requirements on the left. The size of each hardware kernel, its
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performance, and how close it fits to the derivative’s requirements should be
compared. Keep in mind that a poor fitting hardware kernel for the diagram to
the right is worse in performance, but it might well fit the requirements of the
diagram to the left if the size is not too large. The hardware kernel that meets
the goals is the best, which can be determined by creating a weighted sum of
the hardware kernel’s capabilities, where the weights are a translation of the
derivative’s requirements. For example, the diagram to the right has a short
TTM, large size, and a high performance requirement, so these parameters are
heavily weighted; the low requirements for power reduction and technology
receive low weightings. The subsequent rating then is:

Rating = Sum (Derivative’s weight hardware kernel’s capability)

System-level performance modeling tools provide an efficient means to explore
the effectiveness of a number of chosen hardware kernels by mapping the appli-
cation to them and comparing the system-level response.

Selecting Peripheral VCs
A similar process is used to select the peripheral VCs after the hardware kernel is
mapped to the derivative’s architecture. The VCs in the platform need to be sorted
by their ability to fill a requirement in the mapped derivative design and to con-
nect to the chosen hardware kernel. Because more than one alternative for each
possible peripheral VC could exist, or one VC could fill more than one function,
begin with the function that is covered by the fewest VCs in the platform library.
Rate the peripheral VCs using the weighted sum above, and pick the one with the
highest rating. After picking that VC, other peripheral VCs with overlapping func-
tions could be eliminated. Repeat this process until all the VCs have been chosen.

Again, using system-level tools allows various peripherals to be explored and
to determine the impact at the system level.

Integrating a Platform

Top-Level Netlist
Mapping the architecture to the selected VCs is usually done at the architec-
ture level, where the implementation of modules in hardware or software is
not distinguished. To assign the modules to their proper VCs, they are first
mapped to the instruction-model level based on the software/hardware map-
ping, and then mapped down to the behavioral-model level. At this level, the
platform VC’s models can replace the derivative’s modules by adding glue logic
to match the interface requirements. Eliminating the glue where redundant
yields a top-level netlist.
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Verification and Refinement
Up to this point, the derivative design has been simulated with a testbench
derived from the original system requirements, and mapped down to the behav-
ioral level. Further refinement is done by substituting the register-transfer level
(RTL) models for the equivalent blocks in the behavioral model. In some cases,
a number of parameters might need to be set to generate the appropriate RTL
for the behavioral block. This should be done in accordance with the require-
ments of the derivative design, which partially translate into the requirements
specified for each block at the behavioral level.

The hardware kernel’s cycle-accurate model can be used to verify the func-
tionality and performance at this level.

With the proper assertions at the behavioral level and below, formal verifi-
cation techniques can also be used to help verify the successive refinements of
the design. Together, the two verification techniques minimize the verification
cycles—minor changes to the design are formally verified, leaving major regres-
sion cycles to the traditional simulation approaches. Most formal verification
programs can compare RTL to netlist-level designs for functional equivalence,
without the need for an assertion file. The assertion files can be used in place
of behavioral to RTL formal verification, which might not be robust enough.

VC Interfaces
After the top-level netlist and a cycle-accurate simulation model exist, the VC
interface parameters are derived. In Figure 7.2, the VC interfaces on the hardware
kernel connect to the system bus, and the VC interfaces on the peripheral VCs
connect directly to the peripheral VC. The VC interface should have the same
data and address sizes as either the peripheral VC or the system bus, whichever is
possible given the range of parameterization of the VCs. Usually, more parame-
terization (flexibility) is available on the hardware kernel, so the VC interface size
that is safest to use is the one that matches the peripheral VC’s internal address and
data bus sizes. If that is not possible, use the same sizes on both sides of the inter-
face and add interconnect logic to match the VC to the system bus size.

Clocks
At this point, the clocks are hooked up by connecting the available clocks on
each hardware kernel VC interface to the clock pin(s) on the peripheral VCs.
At this time, the PLLs are hooked up between the chip’s clock pin and the
hardware kernel. The hardware kernel contains the clock distribution for each
of the clocks in the design. The required delay of the clock trees in the periph-
eral VCs is specified for each of the clock outputs from the hardware kernel.
These should be applied to their respective peripheral clocks. In some cases,
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the hardware kernel might have multiple asynchronous clocks. This can still be
managed in timing analysis on a clock by clock basis if the following rules
apply:

The hardware kernel distributes these clocks to separate ports.
The peripheral VCs use only clocks that are synchronous to each other.
No direct connections exist between peripheral VCs that have clocks
asynchronous to each other.
The hardware kernel deals with all asynchronous communication that
occurs between logic that uses the asynchronous clocks completely within
the hardware kernel.

Verifying that no direct connections exist between peripheral VCs that have
clocks asynchronous to each other can be done by simulating to stability after
setting all internal states in the design (to avoid unknowns) and setting each of
the clocks to unknown by repeating this process for each clock. After each
clock is unknown, check the interconnects between the peripheral VCs on
VCs that have a known clock value. If any of the interconnects have unknown
values, this rule has been violated.

I/O and AMS VCs
Usually, the I/Os and analog/mixed-signal (AMS) VCs are placed on the
periphery of the chip. These VCs contain their own pads, power, and ground
rings. A single VC might contain one or more pads. These pads should be
spaced according to the requirements of the semiconductor vendor. Special
voltages are either provided as part of the power and ground rings (since the
I/O power and ground is separate from the internal power and ground) or as
part of the I/O pads of the cell. The internal power and ground may not be part
of the original block, unless it is used within the block, but in either case it is
included as part of the collar for the VCs.

As shown in Figure 7.6, the collar should extend the power and ground rings
to the edges of the cell to allow for a butting connection with the portion of
the rings created in the power module. As such, the power and ground at the
edges of the VCs match the requirements to be specified in the power module.
To insert an I/O cell, the existing power and ground rings are cut and replaced.
Only digital signals using the internal power and ground voltages are valid con-
nections between these VCs and the rest of the internal logic in the chip. As a
result, all level shifting and conversion from analog to digital is done within the
I/O or AMS VCs.

The package selected must have enough physical pins for all of the design’s
signals, test logic, and power and ground pin requirements. The silicon vendor
can provide the power and ground I/O requirements.
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When placing I/O blocks, the locations of fixed power and ground pins on
the selected package, and the estimate of the additional power and ground pins
required to minimize power and ground bounce, must be taken into consider-
ation. The pin assignment might have to be altered following the power distri-
bution design to allow for additional or replaced power and ground pins.

The I/O blocks are placed so that powers or grounds can be added at the
end of each row. Simultaneously switching I/Os are placed near the dedicated
power and ground pins of the package, if possible. This reduces the need for
additional power and ground pins. Either organize the pins to minimize the
wiring congestion on the board, or organize the I/O VCs to minimize the
routing requirements for the chip, while keeping the logical groups of I/O con-
tiguous for easy usage. Position AMS VCs along with the I/O on the edge of
the chip. As much as possible, place AMS VCs next to dedicated power and
ground pins to reduce the signal coupling between the AMS signals and the
digital signals.

With the rise of special high-speed I/O structures, like RAMBUS, the dis-
tinction between traditional I/O and analog is blurring, which is why I/O cells
and AMS blocks have been grouped together in this analysis.

Test Structures
The test structures are planned before the VCs are implemented. Testing a com-
plex SOC consists of a hierarchical, heterogeneous set of strategies and struc-
tures. A mixture of traditional functional tests, scan-based tests, built-in self-test
(BIST), and at-speed testing should be used, as necessary. Traditional scan is
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useful for catching structural flaws in the chips, but it is not adequate for veri-
fying the chip’s performance. This requires at-speed testing. Integrated circuit
designs and processes are becoming so complex that traditional methods of
guaranteeing SOC performance using timing libraries are inadequate for ensur-
ing that all structurally sound devices from wafers that meet the process limits
will also meet the performance requirements of the design. This is partially due
to the increasing inaccuracies of the timing models and the increasing variation
of individual process parameters as we move into ever deeper submicron
geometries.

At-speed testing is one solution to this problem. Much of the hardware ker-
nel could be tested with at-speed functional tests if the internal cache or scratch
pad memory can be used to run diagnostic tests. This approach, like BIST, could
alleviate the need for high-speed testers in manufacturing. A low-speed or
scan-based tester loads the diagnostic or BIST controls. A high-speed clock
then runs the BIST or diagnostic tests and unloads the results via the slow tester
clock. This approach only requires generating a high-speed clock through spe-
cial logic on the probe card and is far less expensive than a high-speed tester.

Even if scan is not used internally within the VCs in the design, use it to
isolate and test the VCs individually within the chip. This enables each of the
VC’s tests from the platform library to be used, which greatly reduces the test
generation time. Unfortunately, traditional IEEE 1149.1 joint test action group
(JTAG) control structures do not have facilities for multilevel, hierarchical test
construction. Additional user-specific instructions must be added to enable the
JTAG at the chip level to control all the levels of scan and BIST strings in the
chip. Each of the blocks or VCs at the top level of the design should have their
own pseudo JTAG controller, which we refer to as a VC test controller
(VCTC), as shown in Figure 7.7. A VCTC controls other VCTCs internal to
the block. The hardware kernel’s VCTC needs to connect to the VCTCs of
the subblocks within the hardware kernel. At the lowest level, the VCTC con-
trols the BIST or scan-based testing of the VC.

At this point in the design process, the structure of the physical test logic is
defined. The top-level JTAG controller logic and pins are added to the top-
level netlist, along with the connections to the blocks. The block-level test logic
is added in VC design, and the test generation and concatenation occurs in chip
assembly.

Power Requirements
Power requirements are translated into power rings around the blocks, and an
interconnect structure is defined to distribute power to the blocks from the
top chip-level rings around the edge of the chip. The diagram in Figure 7.8
shows how such a structure is wired.
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Connecting all the blocks in the design yields a power and ground distrib-
ution system shown in Figure 7.9. The hardware kernel, which takes up almost
half the chip area, is on the left.

This structure might seem redundant when compared to a single set of
power and ground stripes between the blocks in the design, but it has a num-
ber of advantages:

It is block-oriented, so blocks can shift at the top level without changing
the block requirements for their rings.
The underlying grid is easier to calculate than other structures, and is thus
easier to plan.
The global interconnect is properly external to the block, so changes in
routing do not affect the block layout.

Floor Planning
Lastly, the models are migrated to the logical netlist level. Since the hardware
kernel has a hard implementation, the detailed timing of its I/Os is available.
Any functional parameters must be set at this time to create the proper foot-
print for the hardware kernel. Detailed timing is then done to verify that the
design meets the requirements. To reduce the slack, negative slack is used to
drive the floor planning, which consists of manually placing the hardware ker-
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nel and the peripheral blocks initially near their respective VC interfaces. These
are then moved as necessary to meet the design’s timing and size constraints.

Block Implementation
During block implementation, the most hardened level of each block that also
meets the specified constraints is selected and the collar logic is created by apply-
ing the specified parameters to the generators or manually designing it. The
clock tree is created using the specified delay obtained from the hardware ker-
nel. In addition, the test logic is included in the collar logic according to the
specification from chip planning. The soft blocks are placed and routed, and the
hard blocks’ collars are placed and routed to the size and shape specified by the
floor plan. The hardened blocks should have shapes that are readily placed in
most derivative designs for that platform, so no repeated layout is required.

Chip Assembly
In this step, the final placement, routing, test pattern generation, and integration
are done. Then a GDSII physical layout file is created, and the appropriate elec-
trical rules checks (ERC) and design rules checks (DRC) are performed. The
test vectors are generated, converted into tester format, and verified as well.
The information necessary for a semiconductor vendor to fabricate the chip is
created.

Throughout this process, the various transformations of the design must be
verified using the techniques described in the section on verification below.

Analyzing Performance
Throughout the process of design implementation, the performance is ana-
lyzed. At the architectural level, timing does not exist within the simulation,
but the known bandwidth requirements can be translated into some level of
performance estimates. For example, an architectural-level model of an MPEG2
decoder might not have any timing in it, but the total number of bytes created
between modules for a given test case can be counted. The test case is translated
into a specific maximum execution time assuming the video requirements of
30 frames per second. At the instruction level, timing is also not explicit, but
again, the number of instructions can be translated into a specific processor that
is known to have a specific MIPS rate. At the behavioral level, estimated time
in approximate clock cycles is now explicit, which translates into a minimum
required clock frequency At RTL and netlist level, static timing analysis is done
in addition to simulation.

With the clock frequency defined, static timing analysis at RTL provides a
rough estimate of the timing (most algorithms use quick synthesis). This can be
used to drive the synthesis tool to insure that the minimum clock frequency
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does not produce violations in the design. At the netlist level, logical timing is
more accurate than RTL timing, but physical back-annotated timing is better:
usually within 5 to 10 percent of the SPICE simulation at the transistor level.

In platform integration, the static timing analysis that is done is focused on
the top-level netlists. Hardened blocks provide their physical back-annotated
timing, while soft netlist level blocks use their logical timing. Floor planning
and block-level synthesis are driven by these static timing analysis results to
generate better design performance.

Verification and Prototyping Techniques

A platform-based design needs to be functionally verified. This section describes
the process of migrating a testbench through successively more detailed models
to guarantee that the design works at every level. Functional simulation is very
time-consuming, especially when simulating the more detailed models. The
techniques for rapid prototyping described here reduce the time required to
verify the derivative design.

Models for Functional Verification
Testbench migration is required to guarantee functional equivalence from the
highest to the lowest levels. As the testbench migrates from one level to the
next, it is further refined to meet the requirements. Refinement must include
additional test suites to test functions that are not directly checked by the con-
verted test suites. This section describes the testbench requirements for each of
the model levels: architectural, instruction set, behavioral, RTL, and physical
netlist.

The key to successfully verifying each level of successive refinement is to
start with the previous level inputs and verify the functionality of the model
over the aspects of the test suite that are invariant between the two levels. At the
same time, the level of detail and the number of points of invariance should
increase as the successive refinement is done.

Functional Level
At the functional level, the testbench uses interactive or batch file input that rep-
resents the full system’s input. The output is also translated into a form that is
equivalent to the full system’s output. For example, a testbench for an MPEG
decoder would consist of inputting one or more MPEG video files, and output
would be one or more pixel files that can be viewed on a monitor. The testbench
translates the I/O into this human recognizable form. In batch mode, it must
handle the file access, or handle the I/O devices for interactive applications.
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Application Level
The testbench at the application level tests the software code. In addition to
the functional level I/Os, there is code that must be loaded initially and,
depending on the application, before each test suite is executed. The code
either resides in a model of memory in the testbench or in a memory block in
the model. The data that is transferred to and from the model must also be bro-
ken down into messages. These are larger than a packet, but smaller than a
whole file or test case.

The point of invariance from the functional level is primarily at the output
file equivalence level, where each functional-level I/O file constitutes a test
suite. Tests to check the basic operation of functionally transparent compo-
nents, such as the reset and boot operations and cache functions, if present in
the model, are also added.

Cycle-Approximate Level
At this level, the testbench is refined from message-level to packet-level trans-
fers to and from the model. A clock and time is added as well. The testbench
from the application level must now gate the data at a rate for the clock in the
model that is equivalent to the real-world operation. Output is also captured on
a clock basis.

The points of invariance from the application level are primarily at the mes-
sage equivalence level and the program/data memory states at the original
points of functional invariance. At this level, appropriate latencies within and
between blocks in the design are also verified. Typically, these tests are diag-
nostics that run in a simplified manner across limited sets of blocks in the
design.

Cycle-Accurate Level
The cycle-accurate testbench is refined from packet-level transfers to word-
level transfers to and from the model. Data is now captured on a clock-cycle
basis, where a packet of data might take many cycles to transfer. The data is also
decomposed into individual signals from the higher level functional packets.
Output is created on a cycle by cycle, single-signal basis.

The points of invariance from the cycle-approximate level are at the packet-
equivalence level and selected register and program/data memory states at the
original points of application invariance. Adjustments to the testbench output
interpretation or test suite timing must be made to insure these states are invari-
ant. This might require either reordering the output to insure invariance or
choosing a subset of the message-level points. Tests to check the proper func-
tioning of critical interactions in the system, such as cache to processor, the bus
operations, or critical I/O functions, are also added.
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Timing-Accurate Level
The testbench is refined from word-level transfers to timing-accurate signal
transfers to and from the model. Every set of signals, including the clock,
switches at a specific time, usually with respect to the clock edge. Output can
be captured in relation to the clock, but it is transferred back to the testbench
at a specific point in the simulation time.

The points of invariance from the cycle-accurate level are at the clock-
equivalence level, and most register and program/data memory states at the
original points of cycle-approximate invariance. Adjustments to the testbench
output interpretation or test suite timing must be made to insure these states are
invariant. This might require either reordering the output signals between adja-
cent clocks to insure invariance or choosing a subset of the packet-level points.
Additional tests at this level include checking the proper functioning of criti-
cal intraclock operations, such as late registering of bus grants, cache coherency
timing, and critical I/O functions that occur within a clock cycle.

Example of the Testbench Migration Process
In this example, the functional level model is a token-based behavioral model.
The cycle-approximate behavioral model has a complete signal-specific, top-
level netlist. To verify the resulting netlist with the original, token-level test
vectors, additional layers to the original testbench must be added.

The original testbench provides tokens, which are data blocks of any size, into
and out of the model. It controls the transfer of the data based on specific signals,
not clocks, since clocks do not exist in the behavioral model. The behavioral
blocks are targeted for either hardware or software, depending on the resulting
architecture that is chosen. A simplified diagram of this is shown in Figure 7.10.

To use the same token-level tests, it is necessary to translate from the token-
level to the cycle-approximate level. Since the token level has blocks of data
that could be any size, two levels of translation must occur. First, the data must
be broken into packets or blocks that are small enough to be transferred on a
bus. Second, the proper protocols must be introduced for the types of inter-
faces the design will have. Figure 7.11 shows this transformation.
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In this example, the cycle-approximate behavioral model has a correct signal-
level netlist that connects to hardware VCs only. A clock and an interface for exter-
nal or internal memory for the object code from the original software VCs in the
functional model must be added. The specific pin interfaces for the types of buses
the chip will connect to on the board also must be added. The procedure described
here for accomplishing this requires standard interfaces that are part of the Virtual
Socket Interface (VSI) Alliance’s on-chip bus (OCB) VC interface specification.

In the behavioral-level model, the types of interfaces are defined. The easiest
way to simulate using those protocols is to use in the testbench a similar block
opposite to the interface block that is used in the chip. The signal pins can then
be connected in a reasonably easy way. Next, the VC interface on that interface
block is connected to a behavioral model that takes in messages and writes them
out as multiple patterns on the VC interface. Lastly, another program that reads in
tokens and breaks them down to message-level packets to transfer to the VC
interface-level driver is added. The diagram in Figure 7.12 depicts this translation.

Now the top-level token to message translator all the way to the VC inter-
face can be done using the OCB transaction language. A series of routines con-
verts token-level reads and writes into VC interface calls. The chip interface
block is a mirror image of the interface block inside the chip. For example, if
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the chip has a PCI interface on it and a target device internal to the chip, the
testbench should contain a behavioral model of a initiator PCI interface. These
mirror image protocol translators are defined as follows:

Mirror function Interface function = 1 or no changes from VC inter-
face to VC interface (up to the maximum capability of the specific
interface used)

The token to message translator must be at the transaction language level
described in Chapter 5. Some code must be written to translate tokens into a
series of transaction calls, but the rest can be obtained from either a standard
translation technique or from the platform library (in the case of the chip inter-
face blocks).

Verifying Peripheral-Hardware Kernel Interconnect
Vectors for testing each of the VCs are in the VSI Alliance’s OCB transaction
language form in the platform library. The VCs are individually tested with
their vectors first, and then later a testbench is used to communicate from the
transaction language through the bus block to the individual blocks.

Each VC in the system is verified. These same vectors are then interleaved in
the same fashion that would be seen in the system. This is an initial system-bus
verification tool, which later can be augmented with system-level transactions.
The transaction language has three levels-the highest is VC-interface indepen-
dent, while the lowest is VC-interface, cycle-timing specific. The middle trans-
action language is a series of relocatable VC interface reads, writes, waits, and
nops.The test vector files contain the specific VC interface signal values as para-
meters, along with variables for relocatability. Reads contain the expected infor-
mation, and writes contain the data to be written. Assignment statements and
global variables allow the creation of test suites that are address- and option-
code relocatable for use in different systems. This feature results in a new
methodology for migrating the testbench and applying it to successively more
accurate models, while keeping the same functional stimulus. This technique is
shown in Figure 7.13.

Each peripheral VC has its own test set, previously verified via the stand-
alone VC testing technique. The hardware kernel has at least two VC inter-
faces for any specific bus; one is used for each of the target blocks and the other
to connect the behavioral VC interface model. If all of the VC interface slots are
assigned to peripheral VCs, the peripheral VCs should be removed to free a slot
for the behavioral VC interface model. The vectors for the resident peripheral
VCs are then executed through the hardware kernel model’s bus.

The system vectors need to cover at least the common characteristics among
all the devices in the platform library that can be connected to the hardware
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kernel, probably in the form of an I/O software shell or control routine. This
can be run on the hardware kernel as an additional hardware kernel-based sys-
tem diagnostic. The diagnostic does not need to use the transaction language to
generate or observe bus-level transactions. It can contain only functional vec-
tors that can be observed on the external pins of the hardware kernel. Either
the pins go directly to the chip’s I/O pins or a special testbench must be cre-
ated to access these pins.

Verifying and Debugging Software
To verify and debug the software, instruction-set simulators and cross com-
pilers can be used to verify the functionality of the software modules before
loading them into the prototype systems. Special debug compilations provide
tracing and check-pointing as well. Other special compilations accumulate
statistics about the execution of the code. These profilers produce tables that
show where the code was most executed or the size of the numeric values
that were computed. These tools are useful in optimizing the code for better
performance.

Some of these capabilities are extended to rapid prototyping facilities as well
as the target chip by providing test logic inside the processor, which returns
the low-order bits of the current instruction address in real time to the exter-
nal pins. This capability can be included in the hardware kernel, using the JTAG
interface as the external interface. Software that emulates the operation based
on a map of the actual instruction space also exists. It interprets the instruction
address and emulates the operation of the instruction in parallel with the hard-
ware, so that the software designer can have complete visibility of the software
module’s code as it executes on the processor.
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Rapid-Prototyping Options
The typical derivative design size is large enough to require many millions of
clock cycles of testing. This creates regression simulations that can run weeks or
months when using an RTL or gate-level simulator. Verification then becomes
the bottleneck when developing a derivative. Using emulators or programma-
ble prototypes, which are only one order of magnitude slower than the real
device, reduces verification time.

For example, Quickturn’s hardware emulators, which are massive groups of
Xilinx, SRAM-programmable field-programmable gate arrays (FPGA), are
configured so that large logic functions can be mapped onto them. Aptix’s or
Simutech’s quick prototyping systems have slots for standard devices, buses,
interconnect chips, and FPGAs that enable more targeted emulation.

The most appropriate rapid-prototyping device for platform designs con-
sists of a hardwired hardware kernel and slots for memory or FPGAs off of the
hardware kernel’s bus. The hardware kernel contains a model with its VC inter-
face removed to allow mapping to such a hardware prototype. The peripheral
VCs are synthesized into the FPGA logic and merged with the VC interface
logic from the hardware kernel. To create a suitable model for rapid prototyp-
ing, the process of chip planning through block implementation must target
the FPGA only.

The primary I/Os go either to a mock-up of the real system, or to a
tester-like interface that can control the timing of the data being applied to
the rapid prototype and retrieved from it. In the former case, special clock-
ing and first-in first-out (FIFO) storage might need to be added to syn-
chronize the slower prototype to the real-time requirements of the
mock-up. For example, in a rapid prototype of an MPEG2 set-top box, the
signals from the cable or satellite must be stored and transferred to the pro-
totype at a much slower rate. This can be done by having another computer
system drive the video data onto the coax-input cable at a slower rate. The
television set on the other side must have either a tape for storing the screens
or at least have a single-frame buffer to repeat the transmission of each frame
until the next frame arrives. If not, the image will be unrecognizable by the
designer.

Experience has shown that creating this type of model often has its own
lengthy debug cycle, which reduces the effectiveness of rapid prototyping. One
way to avoid this is to debug the hardware kernel rapid prototype with a ref-
erence design before making it available for the derivative design debug.

The debug process should include the ability to view the instruction exe-
cution, as well as monitor the bus traffic through a separate VC interface. This
is done easily by connecting the bus to some of the external pins of one of the
unused FPGAs. This FPGA is then loaded with a hardware monitor that trans-



Creating Derivative Designs 175

fers the data back to the user’s computer through a standard PC interface, such
as a parallel I/O port or USB. The traces are used to simulate the RTL or lower
models up to the point of failure to obtain internal states in the design, which
are not viewable through the hardware.

Breaking up the test suite into smaller and smaller units to isolate the bug
without using a lot of simulation time minimizes the debug effort. One way
to do this is to create a standard bring-up or reset module. Then organize the
test suites into segments, any one of which can be executed after applying
the reset sequence, regardless of the previous tests that were applied. For
example, the MPEG2 test suites can have limited sequences between I
frames. If the test suites are broken into groups beginning with an I frame,
the test suite segment that failed can be run after the reset sequence on a
simulation of the design in a reasonable amount of time. Furthermore, if the
failing cycle or transaction is identified from the traces off the rapid proto-
type, the data capturing on the simulator is done on the cycles of interest
only, thus saving even more time, because the I/O often takes more time
than the simulation itself.

Engineering Trade-offs

Some of the engineering trade-offs regarding designing an integration plat-
form include selecting the VCs to use in a design, and implementing and ver-
ifying a platform-based design.

Selecting VCs
When comparing parameterized hardware kernels with non-parameterized
ones, what the parameterized hardware kernel would reduce to needs to be
estimated. If the specific parameters are not yet determined, the TTM for
the parameterized kernel is worse than for the non-parameterized one,
because the parameterized kernel must be generated with the correct para-
meter settings. If the correct parameter values are known, they are applied to
the parameterized hardware kernel. This produces a design that is equivalent
to the non-parameterized one for better comparison. If more than one
viable option from a parameterized hardware kernel is available, ideally all
options are created. Unfortunately, this can result in too many options,
which in this case only the extreme options are created. When there is a
continuous range for a parameter, use the results of the two extreme cases to
determine the correct setting for the derivative design. Sometimes this value
can be calculated. For example, a bridge might have a parameterized depth
for its FIFO. Both no FIFO and the largest FIFO can be created, but it might
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be easier to look at the traffic pattern and just create the correctly sized
FIFO. If not, a simulation with monitors on the FIFO would obtain the
same results.

When comparing a hardware kernel that contains a number of the features
needed in the derivative design to a hardware kernel with more VC interfaces
and fewer options, selecting which is the better one depends on whether the
peripheral VCs can cover the same features as the hardware kernel. If the less
flexible hardware kernel does not have an exact fit, use the hardware kernel
with more VC interfaces, which is more flexible, unless the debug costs are
excessive. It is important to factor in the time required to debug the additional
features compared to starting with a prequalified hardware kernel.

When choosing VCs for a derivative design, equivalent functions in both
software and hardware form might exist. If both options meet the required
performance and the MIPS exist in the processor for the new VC, use the
software solution. However, it is more likely that something must be added to
the hardware to fit this block into software. In that case, the VC should go in
hardware if the design has not reached its size limits. If when mapping the
design, a VC wants to go into hardware, but the only VC in the platform
library that contains the desired function is in software, the function must be
put in software, and the design is mapped from that point to determine what
other functions can be put into hardware in its place. Most of these decisions
are made when designing an integration platform, but iterations might be
required between choosing the platform and VCs and mapping the rest of the
system.

Reconfiguring vs. Redesigning
Ideally, most parameterization is either in the soft collar of a hard VC or is in
soft VCs, which means the parameters are set and the resulting logic can still be
optimized through synthesis, regardless of the type of parameterization. If the
VC is hard, the choices are either tying option pins to specific values or using
the options provided in configuration registers. Configuration registers pro-
vide more debug capability. If the wrong options are selected prior to imple-
mentation, they can still be modified at system bring-up. Generally, building
options into the chip, which can be configured out during bring-up rather
than leaving them out, is safer, especially when the difference is a small amount
of logic. This is because system debug often turns up situations that were unan-
ticipated during design implementation and verification of the design. The
alternatives are to respin the part, which with today’s mask costs is an additional
half million dollars, or to reconfigure the part at bring-up. The latter is far less
expensive. Unfortunately, it is impossible to anticipate where the bugs might be
found and what can be done to fix them, but having more configuration
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options increases the likelihood that the next system-level bug can be fixed
with reconfiguration rather than redesign.

Reconfigurable Logic
When deciding whether to use reconfigurable logic in a derivative design, three
conditions of use are:

If a design needs a number of different but only occasionally swapped
applications, each one of which can fit in the FPGA block provided, and
the performance of each of them requires that they be either in hardware
or FPGA. This is because FPGA logic is 20 to 50 times larger than standard
cell design. If only two or three well-defined applications need the FPGA,
they can all be created in hardware and multiplexor-selected between them
at far less silicon area than the FPGA logic requires.
If designs have a number of unknown applications that can fit into the area
and need the performance of an FPGA. In this case, the instant reconfigurable
FPGA would be better, since size is less critical with that option.
If the design needs a rapid prototype that can fit in a single chip. Some
hand-held devices might fit that requirement. In this case, the FPGA logic
is added to the design instead of the peripheral VCs. This is then used in
the same manner as the rapid prototyping approach. The hardware kernel
should be general to increase the likelihood of reuse, because this approach
is much more expensive given that the FPGA-based design needs to be
first debugged to use it to debug the derivative design.

Selecting Verification Methods
The belief that it is best to test thoroughly at each level because fixing a bug at
the next is much costlier might no longer be true, because the cost of testing
could outweigh the advantage of finding the bug. In semiconductor manufac-
turing, if the part is cheap enough and the yield is high enough, no wafer sort
is done. The parts are just packaged and then tested. If they are bad, the pack-
age cost is lost. If the yield is 95 percent, the package can cost almost 20 times
the cost of the test, and it is still cheaper not to do the test.

In platform integration most of the design is reused. Only the top level inter-
connect is new. As a result, most of the effort is in verification. The simulation
speeds for a design go from architectural, which is the fastest, to physical netlist,
which is the slowest. Emulation and rapid prototyping are as fast or faster than
architectural simulation. If the team is constant over the life of the project (pos-
sibly true for platform integration, not design), every day that the simulation
can run faster saves a day of development at the project’s run rate. For example,
if a bug at RTL costs a day to find and fix, at the netlist level it costs ten days.
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If the simulation necessary to find the bug costs over ten days to run, it is
cheaper to let the bug get caught at the later level. Follow these guidelines
when determining which type of verification to use and when:

Do as much simulation as possible at the architectural level, because that is
when bugs are the cheapest to find and correct, and the simulation is efficient.
Do successively less simulation as the design progresses down to physical
netlist. Never do more than it takes to fix the bugs at the next level. It is
safe to simulate less than five times as many hours as it took to fix the bugs
at each level, because each level is expected to have fewer bugs than the
previous level (about half), and leaving those bugs is acceptable if
simulating at this level costs more than catching them later.
Do as much rapid prototyping as reasonable, but no less than the amount
of architectural-level simulation, because rapid prototyping is faster than
architectural-level simulation, and the cost of bugs after fabrication is more
than ten times the previous level.
Drop simulation up to the last level if bugs are not found at the previous
level, because simulation is slower at each successive level. The same
amount of simulation time checks less at each successive level. If the
current tests do not catch bugs, the most likely outcome is that bugs will
not be found at the next level. Rather than increase the test time, skip to
rapid prototyping to verify the design.

These guidelines do not apply to any new logic introduced at this level. For
example, if the VC interface logic is added at RTL, the logic for the VC inter-
face must be tested. If bugs are not found, it does not need to be tested until
rapid prototyping. If rapid prototyping finds a bug, you must still go back to the
appropriate level and simulate to isolate the bug. This approach, as radical as it
sounds, will probably save time in most derivative design developments.

Moving Forward

The techniques and requirements for defining, implementing, and verifying a
derivative design are evolving as the technology grows and the markets shift.
Today, derivatives can also be created within narrow application spaces by mix-
ing predesigned, parameterized interfaces with state of the art hardware and
software EDA tools. This section discusses ways to evolve a current reference
design into a full platform, as well as a number of design strategies.

Building a Platform Library
Realistically, an integration platform is not created until a design suggests that
a platform is needed. So what should the hardware kernels have in this plat-
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form? Since only one design exists to base any real analysis on, the platform
library should contain at least one very general hardware kernel. Initially, the
best structure is a flexible hardware kernel, with all the other VCs available as
peripheral blocks. Because it is very expensive to qualify a hardware kernel and
all the VCs in a platform library, they must be designed for reuse. The most
flexible hardware kernel will be reused if there are any more derivative designs.
After a number of derivative designs have been successfully completed, the
common elements of all the derivative designs can be incorporated into a new
hardware kernel to reduce the need to continually integrate these elements on
successive derivative designs.

If a derivative design requires a new function, the function should be imple-
mented as a peripheral VC and added to the platform library prior to design-
ing the derivative. As new peripheral VCs are added, more derivative designs
can use them, which creates a demand for a hardware kernel with that function
built in. This is one way the platform shifts to better covering the market seg-
ment it is addressing.

The time to build another hardware kernel is when the estimated savings
from having the new hardware kernel is greater than the cost of developing
and qualifying it. As the number of derivative designs that have a common set
of functions increases, so does the number of test suites and models that can be
used to create a hardware kernel, so the cost of developing the hardware ker-
nel should come down over time.

A derivative design can be viewed as the smallest combination of otherwise
common functions in other derivatives. Converting an entire derivative design
into a hardware kernel is less costly than creating one from the common func-
tions found in a number of derivatives. In this case, additional VC interfaces
should be added to the newly created hardware kernel. Over time, and with
continual increases in semiconductor fabrication, derivative designs will become
hardware kernels, thus creating new derivative designs again. This trend keeps
the integration level of the VCs in the platform naturally growing with the capa-
bilities to fabricate the designs.

Migrating Software to Hardware
Throughout this book, we have described general strategies and methodologies for
making platform-based designs. Although these methods are broadly applicable,
many of the tools and methods needed to address the strategies discussed are either
embryonic or non-existent. However, some highly focused methodologies, using
the procedures described, can be created today for developing derivatives for spe-
cific market segments. One such method is migrating software to hardware.

The key for making platform-based systems is to provide predesigned inter-
faces for custom peripherals. The assumption is that these peripherals start out
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as software blocks, which are then transferred into hardware with a number of
interface options, such as separate memory addressed/interrupt controlled
peripherals, co-processor blocks, and execution units for special instructions.

The starting point for this could be an application that runs on a prototype
of the platform, with no custom logic. The entire design is in software, and
the prototype is created from the hardware kernel. Special profiling tools are
created for analyzing which software modules are candidates for conversion
to hardware. Manual procedures must be created to define a block-based cod-
ing style for the software blocks. With these tools and procedures, the engi-
neer can estimate the performance of the selected blocks. The specific type
of interface for each of the blocks must be defined during this assignment
process. Once the specific code and the type of interface is defined, behavioral
synthesis tools are used to convert the software module into RTL code. After
this, the logic is modified to include the protocols for the appropriate inter-
face for each of the RTL blocks and to set the corresponding parameters on
the parameterized hardware kernel. The design can then be mapped to the
FPGA portions of the rapid prototype or integrated into the ASIC chip,
which contains the hard blocks of the non-parameterized portions of the
platform.

After the design is sufficiently verified on the rapid prototype, it runs
through a simplified RTL to silicon flow. The final simulation and timing are
done on a back-annotated, gate-level design of the custom logic, mixed with a
timing-accurate model of the fixed portions of the platform.

The beauty of this system is to let the behavioral synthesis tool do what it is
best at: convert the software into hardware. On the other hand, the VC inter-
face, interrupts, and hooks for the co-processor interface are hardware headers
that get added to the synthesized design, along with generators for the drivers.
In all, the process replaces a software module with a hardware call that invokes
the same function in hardware. By designing a specific set of tools, hardware
protocol interfaces, and software interfaces, a system can be created using tools
that are available today when a more general approach is not possible.

Similar systems could also be built to convert hardware to software on a
module by module basis.

Adaptive Design Optimization Strategies
Many books have been written about the adaptive capabilities of neural net-
works1 and genetic algorithms2 in recent years. As work progresses in these areas,
it will be possible to apply these techniques not only to aid the design develop-

1.Yoh-Han Pao, Adaptive Pattern Recognition and Neural Networks, Addison Wesley, 1989.
2. David E. Goldberg, Genetic Algorithms, Addison Wesley, 1989.
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ment process, but also in optimizing systems while they are in operation. One
example of this, which was introduced in Chapter 5, is in the situation where the
bus architecture includes a programmable arbiter: a separate monitor could keep
track of the system operations and dynamically adjust the operation of the
arbiter to improve the operation of the bus.

Other cases could be constructed when using a system with embedded
FPGA logic. For example, when using a chip that has both a processor and
reconfigurable FPGA logic, a specific application could redundantly consist of
both FPGA hardware and software blocks that do the same task. It is difficult
to schedule the hardware tasks efficiently. It may take many cycles to load a
hardware task into the FPGA’s configuration memory. If the FPGA logic has a
configuration cache with many planes of configuration memory, there is also
the question of when to load the memory. A set of decision trees could quickly
lead to more alternatives than can be stored within the configuration cache. In
these situations, adaptive algorithms could decide which hardware and soft-
ware modules to use and when to load them. With this approach, it is easy to
imagine a system that can tune itself to meet the performance requirements if
given enough learning time.

Taking this approach one step further, it might be possible to apply “genetic
trials” on multiple copies of such devices. Selecting the best results to reproduce
on the next cycle of trials would lead to the correct scheduling approach. The
resulting hardware and software modules could be frozen into the reduced set
of software and hardware modules actually used, or they could be converted
into non-FPGA hardware and software for an even smaller design.

Mixed Electronic-Mechanical Designs
With the rapid progress being made in microelectronic mechanical systems
(MEMS), it is not hard to imagine using these devices on SOCs. The eco-
nomics of integrating MEMS is similar to other process-specific devices, such
as analog, DRAM, or EEPROM. If the MEMS takes up a large part of the
chip, integration might be economical. Otherwise, the process variation must
be small, since the process cost is applied to the entire chip. Fortunately, as the
standard CMOS process becomes more complex, creative micromechanical
engineers are apt to find ways to create mechanical structures using the same
process steps with only minor variations.

In any event, these blocks can be integrated using the same procedures as
those used for integrating analog devices. In fact, for most sensors, an analog
component is necessary to sense or create the electrical signals generated from
or sent to the mechanical devices. In other words, the mechanical devices
should have analog control and sense logic with digital interfaces to connect
with the rest of the SOC in the same manner as the analog blocks.
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As more MEMS are created, entire platforms will be designed around cer-
tain key mechanical devices. For example, acoustic devices can now be inte-
grated on the chips, enabling hearing aids to be implanted directly in the ear.
Optical mirrors have been created to view overhead projection of computer
output. One of the easiest mechanical devices to create is accelerometers, which
are being used to interpolate between location measurements in global posi-
tioning systems (GPS). A future, single-chip GPS system could include a
processor, high-speed analog receivers, and accelerometers.



Analog/Mixed-Signal
in SOC Design

Many of the components along the periphery of SOCs will be the analog inter-
faces to the outside world. The pen and display interface on a personal digit
assistant, the image sensors on a digital camera, the audio and video interface
for a set-top box, and the radio frequency (RF) interface on a portable Internet
device all require analog/mixed-signal (AMS) components. It is projected that
out of all design starts in 1999, 45 percent will contain AMS design content.1

The percentage of design starts in 1997 with AMS was 33 percent.

This chapter presents the major issues surrounding AMS in SOC, and
illustrates a methodology for AMS block authoring, block delivery, and block
integration.

In terms of the tasks associated with the platform-based design (PBD)
methodology, this chapter discusses the tasks and areas shaded in Figure 8.1.
Not surprisingly, these are similar to the digital hardware tasks. However, some
tasks, such as static verification, have less meaning in AMS block design and,
therefore, are not shaded.

Using AMS Components in SOCs

Integrating AMS components poses significant design challenges and added
risks. The challenges mainly lie in the fact that unlike a digital signal where
the information is encoded as either a 0 or 1 (a low voltage or high voltage),
the information contained within an analog signal is continuous to an arbi-
trary degree of resolution depending on the component. Therefore, an AMS
component and all of its interfaces are far less immune to noise in the system

1. Dataquest survey of design starts, actual and planned, September 1997.
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compared to their digital counterparts. The main hurdle, therefore, in inte-
grating AMS components is to account for their more sensitive nature.

Creating AMS components also presents significant design challenges. AMS
blocks are consistently faced with issues, such as precision, noise sensitivity, high
frequency operation, high accuracy operation, and the need for a high dynamic
range within increasingly lower power supply voltages. Design hurdles are tran-
sient noise, substrate coupling noise, ground resistance, inductance, and other
effects. Many techniques have been developed through the course of integrated
circuit (IC) design history to overcome these hurdles, but the challenge now is
to collect and combine these techniques effectively in a new context, the SOC.

Some of the main issues for AMS in SOC addressed in this chapter are:

What type of AMS components are most appropriate for SOCs?
How do I decide whether an AMS component should be on-chip or off-chip?
How do I design AMS virtual components (VC) so that they work in SOCs?
How do I author AMS VCs so that they are reusable?
How do I hand off an AMS design to a digital system integrator who does
not understand AMS issues?
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How do I successfully buy AMS VCs?
How do I perform true system design of AMS blocks making trade-offs at
all levels?
How do I integrate (verify) AMS VCs successfully?
What modifications need to be made to a VC portfolio to account for an
AMSVC?
How do I successfully integrate AMS blocks into a platform-based design?

AMS Defined
Depending on the context, the terms analog and mixed-signal often have
slightly different meanings. In this book, analog refers to designs that contain
signals, either voltages or currents, that predominately have continuous values.
Examples of analog design would be continuous time filters, operational ampli-
fiers, mixers, etc. Mixed-signal refers to designs that contain both analog and
digital signals, but where the design is mainly focused on the analog function-
ality. Examples of mixed-signal design are analog to digital (A/D), digital to
analog (D/A), and phase-locked loops (PLL). AMS refers to the combination
of analog and mixed-signal designs. A typical SOC would be described as dig-
ital with some AMS components because, although such an SOC does contain
both analog and digital signals, the focus of the design and verification for the
system is digital. The AMS focus is primarily at the block level only.

In the simulation context, mixed-signal is defined as mixed-circuit and
event-driven simulation. The AMS in Verilog-AMS or VHDL-AMS indicates
that the language allows the user to model some parts for a circuit simulator and
other parts for an event-driven simulator. In the manufacturing test context, a
typical SOC with AMS components is referred to as mixed-signal because in
looking at the part from the outside, both the digital and AMS design portions
require equal attention. The analog components must be tested to see whether
they adhere to parametric values. The digital components require static and
dynamic structural testing. Sometimes, the IC looks as if it were completely
analog, because the signals are almost exclusively analog-in and analog-out. The
digital circuitry is only used for intermediate operations within the chip.

What Is an AMS VC?
AMS VCs are intellectual property (IP) blocks, such as A/D and D/A con-
verters that have been socketized. Common confusion often lies in that many
consider VCs to imply reuse in the digital sense. AMS VCs are not reusable in
the same way soft or firm digital VC cores are reusable. Synthesis does not
exist for AMS blocks. Unlike Verilog or VHDL, which have a synthesizable
subset, the emergence of AMS languages only allow modeling the behavior of
AMS blocks, not their synthesis. Today, AMS VCs are delivered solely in hard
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or layout form. They do have value and can be designed to be reusable (dis-
cussed later in this chapter).

AMS in SOC
AMS in SOC, as used in this book, refers to putting AMS VCs in typical SOCs.
Figure 8.2 shows an example of AMS in SOC. Component-wise, the design is
predominately digital with embedded software running on a microprocessor. It
has a system bus and peripheral bus. The video interface, the audio coder-
decoder (codec), the PLL, and the Ethernet interface are AMS VCs. It is also an
example of an SOC that could be analog-in, analog-out. A video stream could
enter via the l0Base-T interface, be decoded via the digital logic and software,
and sent to the video interface for output. This can be contrasted to what oth-
ers have also called mixed-signal SOCs, which are referred to in this book as
AMS custom ICs.

Table 8.1 illustrates the key design differences between AMS in SOC and
AMS custom ICs. There are, of course, many other domains of AMS design,
such as high frequency microwave, power electronics, etc., which are not dis-
cussed in this book.

The AMS VCs in SOC are generally lower in performance than the AMS
blocks found in custom ICs. Two solutions are available to create higher-
performance blocks in SOCs. For medium-performance blocks, the AMS VCs
are integrated into the hardware kernel, or for higher performance, the analog
functionality is left off-chip. If the AMS design can use either solution, one risk
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reduction technique is to design one copy on-chip, but leave pins available to
have a second copy as an off-chip component. If it fails on-chip, the product
can still be shipped. The fully integrated solution can be deferred to the deriv-
ative design, if necessary. The decision is ultimately driven by cost and time to
market (TTM) considerations.
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AMS Customs ICs
Figure 8.3 shows an example of an AMS custom IC, a CMOS Extended
Partial-Response Maximum-Likelihood (EPRML).2 It is characterized by
many feedback loops between the blocks at the first level of decomposition of
the IC. The design of these blocks is very tightly coupled to the process, to
each other, and to the system in terms of function and I/O. The analog or
mixed-signal blocks also make up a significant percentage of the number of
blocks on the chip.

Over time, as process technology improves, many of the functions imple-
mented by the AMS custom ICs will become VCs in SOCs. A 16-bit audio
codec was once a standalone part. Today, it is being integrated into SOCs.
Functions that tend to follow this transition are those where performance
specifications (for example, frequency of operation, dynamic range, and noise)
are fixed. An RF front end is a good example of a function that will not
follow this transition. Although low-performance RF blocks have been
designed into SOCs, market forces continually push the frequency of oper-
ation of RF front ends higher and higher. RF front ends, therefore, tend to
remain as separate ICs requiring special processing steps and methodologies
for custom design.

2. J. Fields, P. Aziz, J. Bailey, F. Barber,J. Bamer, H. Burger, R. Foster, M. Heimann, P. Kempsey, L. Mantz, A.

Mastrocola, R. Peruzzi, T. Peterson,J. Raisinghani, R. Rauschmayer, M. Saniski, N. Sayiner, P. Setty, S. Tedja, K.

Threadgill, K. Fitzpatrick, and K. Fisher, “A 200Mb/s CMOS EPRML Channel with Integrated Servo

Demodulator for Magnetic Hard Disks,” ISSCC Digest of Technical Papers, SA19.1, 1997.
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Block Authoring

The role of AMS block authoring is to design blocks that meet the perfor-
mance specifications within the SOC environment in an efficient and low
risk manner. Unlike digital block design, where automated register transfer
level (RTL) synthesis flows exists, AMS design is accomplished by manually
intensive methods. The majority of design automation tools available are
focused on design capture and verification. Therefore, it is in the design meth-
ods that VC providers differentiate themselves in terms of rapid design, reuse,
and repeatability.

To design within performance specifications in an SOC environment, the
VC provider must design for robustness and compatibility within the SOC
process technology. The design must work in a noisy digital environment and
not use analog-specific process steps, such as capacitors or resistors, unless
allowed. Usually this is accomplished by not pushing performance specifica-
tions. For fast retargeting, VC providers often write their own design automa-
tion tools, such as module generators for specific circuits. However, much of the
success is from designing in a more systematic fashion so that each design step
is captured in a rigorous way. Designing with reuse in mind is also required.
Often, designs are easily retargeted because a designer, knowing that the design
would be ported to other processes, did not use special process-dependent tech-
niques to achieve performance.

As shown in Figure 8.4, the AMS design process begins with specifications
that are mapped to a behavioral model, where parameters are chosen for the
basic building blocks. These parameters become constraints to schematic block
design. The schematic is then mapped to layout or physical design. Some
amount of automation can be applied, or scripts can be written to allow for
fast reimplementation of certain steps, but in general the design process is a
custom effort. Verification occurs at all levels to insure that the design specifi-
cations are met. Once fully constraint-driven and systematic, this serves as an
ideal methodology for AMS VC design.
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Authoring AMS VCs for Reusability
To reuse AMS VCs, a systematic, top-down approach, starting from the behav-
ioral level and based on early verification and constraint propagation, needs to
be employed. Currently, AMS block design faces the following challenges and
issues:

• Chip-level simulation requires too much time.
• Design budgets are not distributed in a well-defined manner across blocks.
• Too much time is spent on low-level iterations.
• Design is not completely systematic.
• There is limited or no use of hardware description languages (HDL).

The top-down, constraint-driven methodology addresses these issues. Figure 8.5
shows an overview of this methodology.3 Specifications for the block to be

3. For a full description of this methodology, refer to H. Chang, E. Charbon, U. Choudhury, A. Demir, E. Fe

E. Liu, E. Malavasi, A. Sangiovanni-Vincentelli, and I.Vassiliou, A Top-Down, Constraint-Driven Design Methodok

for Analog Integrated Circuits, Kluwer Academic Publishers, 1997.
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designed enter from the top. An appropriate model, either in a HDL or
schematic, is built for that block where the specifications for the next level are
the parameters or variables in that model. The goal of the model is to translate
these parameters into its specifications, so that various decompositions can be
tried to find an optimal decomposition that meets the block requirements.

The following equation is used for mapping from one level to the next:

At each design level, flexibility (flex) of the next design step is maximized sub-
ject to the specifications for that block. The variables(var)are the performance
specifications (specs) for the next level in the hierarchy.

This mathematical representation captures the design intent in a systematic
method, enabling design reuse. It also provides some degree of automation to
decrease design times. Using a mathematical program solver increases the speed
of the mapping. The mapping process continues until the full schematic design
is completed. A similar method is used for layout design.

This methodology and the function-architecture co-design approach described
in Chapter 4 are based on the same goals and execution. As in the function-
architecture co-design approach, the top-down, constraint-driven design method-
ology has the following characteristics:

Captures the design process and makes it more systematic.
Has rigorous definitions behind each step, and creates intermediate
stopping points or sign-offs to enable different final implementations to be
retargeted.
Begins with a model that is independent of the final implementation so as
to target different design contexts and applications.
Provides the methodological context for decisions to be made early in the
design process, unencumbered by unnecessary details of implementation.
Compares system behavior in the abstract models to map the behaviors to
architectures.
Allows for reuse of pre-existing components that fix parameters in the
behavioral representation.

Support tools for this method include mixed-level, mixed-mode simulation
capabilities; constraint-driven, semi-automated to automated mixed-signal lay-
out place and route at both the block and device level; budgeting/optimization
tools; verification and hierarchical parasitic extraction capabilities; design data
management; design automation software libraries to support building relatively
simple module generators for fixed-structure components; and statistical simu-
lation packages to aid both behavioral simulation as well as design for test.
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Fundamental tools include tools for substrate coupling analysis because of
the noisy digital environment; high-level language capability; schematic cap-
ture; layout capabilities; and verification tools, such as design rule checkers and
corner checking.

Using Firm AMS VCs
Although a synthesis methodology does not exist, a systematic design method
is sufficient to discuss VCs that are more retargetable than hard VCs. Figure 8.6
illustrates a higher-level handoff. If both the VC provider and VC integrator
have an understanding of the same systematic design methodology, the VC
provider can pass the intermediate design data to the VC integrator to finish the
layout.

However, it is more likely that the VC provider keeps the firm information
and takes advantage of the format for fast retargeting to different manufactur-
ing processes to deliver hard VCs. The provider can even build this firm VC
into a VC portfolio or integration platform for more reuse.
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Past Examples
Firm-like IP for AMS is not unprecedented. The term IP is used in this con-
text to indicate that the block being discussed has not been socketized. Much
of it has been in the form of module generators, which include complete
design-to-layout generators4 to layout-only generators.5 Knowledge-capture
systems that attempt to encapsulate IP have also been created.6 In general, these
pieces of IP consist of fixed architectures, allowances for minor performance
specification changes, allowances for process migration, detailed layout infor-
mation, and automatic synthesis from specifications.

These module generators and knowledge-capture systems have had only
limited success because of two fundamental flaws. First, there is no standard for
the final set of deliverables. The IP integrator does not know what information
is in the IP, because of a lack of definition starting from I/Os and operating
parameters all the way to the configuration management of the IP creation
tool. Secondly, and a more fundamental flaw that is not so easily addressed, is
that the firm IP has similar characteristics to silicon compilers (see Figure 8.7),
and thereby, suffers some of the same problems, such as generators that are

4. H. Koh, C. Sequin, and P. Gray,“OPASYN: A Compiler for CMOS Operational Amplifiers,” IEEE

Transactions on CAD, February 1990; G.Jusuf, P.R. Gray, and A.L. Sangiovanni-Vincentelli, “CADICS-Cyclic

Analog-to-Digital Converter Synthesis,” Proceedings of the IEEE International Conference on Computer-Aided

Design, November 1990, pp. 286-289; and R. Neff, P. Gray, and A.L. Sangiovanni-Vincentelli, “A Module

Generator for High Speed CMOS Current Output Digital/Analog Converters,” Proceedings of the IEEE Custom

Integrated Circuits Conference, May 1995, pp. 481-484.

5. H.Yaghutiel, S. Shen, P. Gray, and A. Sangiovanni-Vincentelli, “Automatic Layout of Switched-Capacitor

Filters for Custom Applications,” Proceedings of the International Solid-State Circuits Conference (ISSCC), February

1988, pp. 170-171.

6. M. Degrauwe, et al.,“IDAC: An Interactive Design Tool for Analog CMOS Circuits,” IEEE Journal of

Solid-State Circuits, vol. SC-22, n. 6, pp. 1106-1116, December 1987; and J. Rijmenants, J.B. Litsios, T.R. Schwarz,

and M.G.R. Degrauwe, “ILAC: An Automated Layout Tool for Analog CMOS Circuits,” IEEE Journal of Solid-

State Circuits, vol. SC-24, n. 2., pp. 417-425, April 1989.
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extremely difficult to maintain. This results in fast obsolescence of the IP, and
because it is extremely optimized for performance, it is difficult to re-tune for
survival even for a few manufacturing process generations.

Instead, we propose a firm VC based on the top-down design methodol-
ogy with a strict set of outputs, repositioning its use as shown in Figure 8.8.
Firm AMS VCs contain a fixed architecture, layout information, and sufficient
information to connect the architecture to implementation. This can be done
in the form of constraints.

The AMS VC has a relatively fixed function. For example, an A/D converter
remains an A/D, but the number of bits can vary. Performance specifications
can also vary within the scope of the architecture. They can include portabil-
ity of technology (manufacturing), operating conditions (supply voltages, cur-
rents, etc.), external layout-considerations (VC I/O pin locations, etc.), and
optimization target (area, speed, power, cost, etc.).

When using firm VCs, the user can be either a VC integrator or a VC provider
who delivers hard VCs, but must be familiar with the top-down, constraint-
driven design methodology. The user must also be competent in AMS IC, block,
or VC design. Because the top-down design methodology is not an automatic
synthesis process, it is not anticipated that the VC user will have an automated
design process once the handoff has been made. To bridge the differences in
knowledge and design processes between VC providers and VC integrators, appli-
cation notes and applications engineers need to be provided.

There is an art to AMS design and verification, since there is no automated
process for doing this. For example, part of the handoff might specify that a
component, such as an operational amplifier, must be designed to a certain set
of specifications. It is the VC user’s job to design and verify this block to spec-
ifications. As another example, a question could arise as to how much verifica-
tion is sufficient. Is parasitic layout extraction plus circuit simulation sufficient?
How are offset variations verified? Although the constraint-driven layout tools
remove some of the art in answering these concerns, there are still holes that
require an AMS designer to catch.
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Depending on how critical a block is, varying levels of specifications can be
used. Unlike digital firm, which is strictly based on gate-level libraries, the ana-
log design hierarchy does not stop until the device (transistor, resistor, capaci-
tor) level. Thus, if a block is critical, there may be a descent for that block to the
device level. When the descent is not to this depth, the remainder of the design
is treated as a black box. The methodology does also allow for stopping points
when standard analog cells are available.

Basically, the key to this is to save an intermediate state of the design. To do so,
the hierarchy must be described as shown in Figure 8.5 and each block must be
labeled. All of the components used in the mathematical equation also need to be
described. Having the right behavioral models is critical to the design methodol-
ogy. In general, ranges for the specifications should be given, so that a sense of rea-
sonable constraint values are available. An initial value for the budget should
also be provided. Finally, application notes should be given on methods for solving
the mathematical program. Often specific optimization algorithms must be tuned
or entirely different algorithms need to be applied to solve a particular problem.

In terms of physical design, additional specifications have to be included.
These are specifications for how to build the VC, not how to integrate it, and
include standard placement, routing, and compaction constraints. They can be
very detailed, or they can be left to the designer or tool to derive based on the
constraints and allowances for performance degradation

AMS VC Delivery

How the block is delivered to the VC integrator after it has been designed is
critical to the successful use of the VC. To simplify this discussion, only the
delivery of hard VCs is discussed here. This section focuses on the technical
aspects of what is required for delivery as outlined by the Virtual Socket
Interface (VSI) Alliance. Several key operations and business factors that must
be considered are also touched upon.

VSI Alliance's AMS Specifications
The VSI Alliance’s Mixed-Signal Development Working Group (MS DWG)
presents in its 1998 work, Analog/Mixed-Signal VSI Extension (AMS VSI
Extension), standards for specifying the technical requirements for VC delivery.
The MS DWG extends the digital VSI specifications to account for the added
design challenges presented in AMS design.

The methodology context for the AMS VSI Extension, as shown in
Figure 8.9, looks only at the delivery of hard VCs, which is far simpler than what
is required for soft or firm VCs. Because the VC integrator does not have to
design any of the VCs, the intermediate information that would be required for
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soft and firm does not enter into the picture. The only places for information
exchange are at the top of the flow for system architecture and system design
information and at the bottom of the flow for the actual physical layout infor-
mation. This also enables VC providers to use any methodology they want for
design. The AMS VSI Extension does not dictate the methodology employed by
the AMS designer; it only specifies the information that needs to be transferred.

Because of the similarities between a digital hard VC and an AMS hard VC,
the AMS VSI Extension follows the definition for hard VCs for deliverables
where there is a digital counterpart.7 Examples from the Physical Block Imple-
mentation Section are shown in Figure 8.10. This section contains all the nec-

7. “Structural Netlist and HardVC Physical Data Types,” VSI Alliance Implementation / Verification Development

Working Group Specification 1, Version 1.0,June 1998.
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essary information regarding layout. The first column refers to the item num-
ber, and the second contains the name of the deliverable. The third column
specifies the selected format in which the deliverable has to be transferred from
VC provider to VC integrator. The fourth column shows whether the deliver-
able is mandatory (M), recommended (R), conditionally mandatory (CM), or
conditionally recommended (CR). The conditional clause is described in detail
in the VSI specifications. For example, deliverable 2.6.1,“detailed physical block
description,” is the layout itself, and it is mandatory that the VC provider deliv-
ers this to the VC integrator in the GDSII physical description format.

For hard VCs, the digital blocks are not concerned with physical isolation
techniques such as substrate well-rings. However, these are often used in AMS
blocks. Thus, in the AMS VSI Extension, Section 2.6. A8.1 has been added (see
Figure 8.11) so that the AMS VC provider can give information to the VC
integrator about what is necessary for physical isolation.

The VSI specification can also be used in other ways. It is likely that it con-
tains a superset of what most design groups are already doing when exchang-
ing VCs. In this case, a current methodology can be replaced by the VSI. A VC
integrator can use the VSI to prepare the internal design process to accept VCs



198 Surviving the SOC Revolution

that would be delivered in the VSI format. Both VC author and integrator work
in parallel to produce and accept VSI parts that can be quickly integrated.

Operations and Business Issues
A key operational issue in VC delivery is the means of delivery and the
applications-engineering support that goes with it. The VC integrator is typi-
cally not an AMS designer. Any modification to the VC requires significant assis-
tance from the VC provider, since even small changes can have a large impact
on the block in terms of function and overall AMS performance specifications.
Small modifications also usually result in re-running long verification cycles.
Often, in selecting VCs from a variety of vendors, a suitable service model is a
prime requirement. Some business issues to consider when selecting VCs include:

Patents Most of the popular standard circuit topologies are patented. Small
VC providers tend to have little in the way of a patent portfolio, and rely
on the buyer of VCs for patent protection.

Pricing models The VC provider and VC integrator must work out a
pricing model for the VCs. Different models include a full license for VCs
so that the buyer can use it anywhere anytime, a charge for the
nonrecurring engineering (NRE) costs, and payment based on royalties.
Typically, a combination of these is used.

Protection It is a good idea for the integrator to obtain as much information
about the VC as possible to mitigate integration risks. Often it is demanded
as an insurance policy to the design know-how. This must be balanced with
the concern that it is prudent to release as little information as possible.

Cost Projections show that the price of a SOC is not likely to increase even
though the number of VCs in a SOC will increase. This will drive the
necessity for low cost VCs. The VC provider must have a way to counter this.

Time for negotiations This is often referred to as “time–to–lawyer.” In some
cases, settling a contract requires more time than the design.

Margins For a VC provider, a key to growth and survival is to create high
margin products and to not just deliver design services on a time and
material basis. This is especially true for AMS design, which is very
designer intensive. Without margin, VC providers cannot bootstrap
themselves for growth. Often they look for other product lines to boost
their overall margin, such as selling home-grown computer-aided design
tools, which, if done correctly, can be of higher margin.
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Vendor status Being selected by a VC integrator often means that the VC
provider becomes a qualified vendor, which is often far beyond the
capabilities of the VC provider. As a vendor, some of the issues the VC
provider needs to take into account include acquisition, integration,
support, management, easy-of-use, leverage, and optimization.

Qualification This might be difficult for VC integrators, since they might
require their own AMS designers for qualification and certification of
AMS VCs.

AMS Components in SOCs

The key to SOC VC selection, chip integration, and verification is for these
processes to occur in as similar a manner as possible as when using digital VCs.

System-Level Design and VC Selection
In the area of system-level design that is software and digital hardware domi-
nated, where automation tools and flows are almost non-existent for AMS
components, and where AMS components are treated as mere functions exist-
ing on the periphery of the system, the most critical need in regards to AMS
is understanding analog and digital implementation trade-offs in terms of
power, performance, and risk. Pragmatically, this means not writing unrealistic
specifications for the AMS components.

At the most basic level, it is important that a joint appreciation between
the digital and the AMS designer exists. The typical digital designer believes
that AMS is mysterious and wants nothing to do with integration. Ironically,
when designers find themselves involved in integration, they tend to over-
simplify the interface. On the other hand, AMS designers view digital as triv-
ial to design, since it is a subset of AMS. Both design teams often try to solve
and/or underestimate each other’s problems, which makes it difficult to do
system-level design.8 The digital designer can integrate AMS components,
but it does require some extra effort. The difference between digital in AMS
and ASICs is that the digital logic is much more complex than in AMS cus-
tom ICs. It has been said that system-level design with AMS only requires
an appreciation for AMS, whereas the design of those components requires
mastery.9

8. “Introduction to the Design of Mixed-Signal Systems-on-a-Chip,” part of the “Design of Complex

Mixed-Signal Systems on a Chip” tutorial, Design Automation Conference, June 1998.

9. R. Rutenbar speaking in the panel “How Much Analog Does a Designer Need to Know for Successful

Mixed-Signal Design?” at the Design Automation Conference, June 1998.
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Some of the most interesting issues in AMS SOC design lie in the trade-off
analysis that determines the eventual integration level of an SOC device, and
the particular choices which are made on how much of the design is imple-
mented in different computational domains—electromechanical, traditional
AMS, digital, or software.

Consider the electromechanical/electronic subsystem chain for an automo-
tive application shown in Figure 8.12. If this subsystem is used for anti-knock
engine control, it might consist of a sensor that converts the particular engine
combustion conditions into streams of analog signals, which are then filtered for
noise, converted to digital at a certain bit rate, and used as input for a control
algorithm implemented in software on a digital signal processor (DSP). The
control signals are converted from digital to analog and then used to control the
actuators which directly impact engine operation.

Theoretically, all the components in this subsystem chain could be integrated
into one device. For the components, it is possible to use either an expensive sen-
sor, which produces a high-quality, low-noise analog signal, or a cheap sensor,
which produces a low-quality noisy signal. Using a cheap sensor can be com-
pensated by using either analog filtering or digital filtering in the DSP. Either of
these would require a more expensive analog device (whether discrete or inte-
grated), or a more powerful, more expensive DSP processor. Table 8.2 indicates
possible trade-offs that would apply to either discrete or integrated SOC devices.

The solution that would be optimal for a particular application depends on
the library portfolio of discrete devices (for an unintegrated option) or the
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available VCs for an SOC device that was going to integrate at least two stages
of the subsystem.

When deciding the analog/digital partitioning and integration for a mixed-
signal system, some options to consider include:10

Custom mixed-signal ASIC or SOC
Custom digital ASIC with external discrete analog devices
Microcontroller with analog peripherals
Standard processor or processor board and standard analog peripheral
devices

Some of the criteria suggested by Small for making trade-off decisions include
design risk (favoring standard parts), TTM (again, favoring standard parts, but
also possibly to optimize to some extent with reusable VCs on an SOC device),
performance (mixed-signal ASIC or SOC), packaging area (favoring ASICs over
all standard parts), process issues (some analog functions do not work in digital
CMOS processes), availability of analog VC functions commercially (this mar-
ket is just emerging), test time (integrated SOC device versus discrete devices).

As with digital design, the trend toward highly integrated SOC devices
incorporating analog VCs, mixed with significant digital devices, seems inex-
orable, albeit longer in coming than in the digital domain.

Making these decision requires AMS models. Early work by the MS DWG
has postulated the need for three types of system models: system evaluation
models, parameterized estimators, and algorithmic-level models. The system
evaluation model represents the basic AMS function, such as A/D conversion
or clock generation. At this stage, few attributes have been assigned to the func-
tion. A parameterized estimator is an executable model that characterizes what
is possible for a particular function. For example, it can provide estimates in
terms of power, frequency, and area as functions of performance specifications.
The algorithmic level model assists in choosing specifications for the AMS
functions. For example, it can be used to decide between a 6-bit and an 8-bit
A/D converter. Note that these could be provided by a VC provider, or an
SOC system designer might also have a set of these very basic models.

Chip Integration
Integrating the AMS block is relatively straightforward once the block author-
ing process and VC delivery process has been accomplished. In some sense,
everything done so far has been to make this step as easy as possible. AMS
blocks must be considered in terms of general clock, power, timing, bus, and test
architectures, as well as general floor planning in terms of the block and the

10. Charles Small, “Improved topologies, tools make mixed-signal ASICs possible,” Computer Design, May

1998, pp. 27–32.
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associated AMS pads. Routing obstructions and constraints must be consid-
ered. Power and ground requires extra planning, since AMS VCs almost always
require separate power pins, which are decoupled from the rest of the system.
AMS blocks also contain additional placement, interconnect, and substrate sen-
sitivity constraints.

In terms of chip assembly, it is just a matter of handling constraints such as
those shown in Figure 8.11. Critical AMS nets can be implemented in the way
of pre-routes, along with the other pre-routes for clock, bus, and digital-critical
interconnects, power, and test.

Additional tool requirements include allowance for placement constraints
in the floor-planning tool. For placement, an AMS block might be specified to
be a certain distance away from the nearest digital block. The placement tool
must also allow for this constraint. Geometric, electrical, symmetry, shielding,
impedance control, and stubs might be specified for routing. The router must
be able to support these structures. Additional power and ground wires can
pose inconsistencies with verification tools. The overall tool system must be
able to deal with these additions. Other requirements might be tools to handle
the quiet power and ground rings for the pads that might be added.

The integration of digital blocks might also require using many of these
techniques, especially in the routing. As process scaling continues, especially
into the realm of ultra-deep submicron, fundamental characteristics of the
process, such as gate delay and interconnect capacitance, do not uniformly scale
to give benefits.11 For example, gate delay tends to be inversely proportional to
continued scaling, while interconnect capacitance tends to be proportional to
scaling. In the context of SOC integration, critical factors affected by scaling
include interconnect capacitance, coupling capacitance, chip-level RC delays as
well as voltage IR drops, electromigration, and AC self-heat. Because of these
factors, different scaling techniques are used to try to compensate for this degra-
dation. However, in all of the methods presented by Kirkpatrick, interconnect
capacitance, coupling capacitance, and global RC delays always degrade. The
scaling method only changes the extent of the degradation.

Thus, for these SOCs, even if the IC only has digital VCs, methods for con-
trolling these factors are critical. AMS constraint-driven design techniques can
be applied to address these issues. The use of constraint-driven layout tools, as
well as AMS simulation tools, can aid in automating place and route ofVCs. For
example, timing constraints using constraint-generation techniques can be
translated to electrical constraints, which can finally be translated into geo-
metric to perform the chip-level placement and routing.

11. D. Kirkpatrick, “The Implications of Deep Sub-Micron Technology on the Design of High Performance

Digital VLSI Systems,” Ph.D. Thesis, UC Berkeley, December 1997.
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Verification Methods
Verification methods for hardware integration of AMS VCs focus on the inter-
faces to the AMS VCs. VC providers need to provide models to assist in this
phase. Because a VC integrator follows an RTL-based design flow, AMS mod-
els need to be put into compatible representations so that the integrator can
make it through the verification flows. These might not accurately represent the
function or performance specifications of the AMS VC, but they do represent
the necessary verification abstraction layers for VCs. An example would be an
RTL-based digital placeholder or dummy model.

In terms of actual verification, the critical piece required of the AMS VC is
the bus-functional model. This might need to be accompanied by a behavioral
model representing the VC’s digital behavior to be used in an overall chip-level
verification strategy. Other verification models that might be required include
a functional/timing digital simulation model for functional verification of the
digital interface, a digital or static timing model for timing verification of the
digital interface, and a peripheral interconnect model and device level inter-
connect model for timing.

AMS and Platform-Based Design

This section describes the role of AMS in platform-based design. Figure 8.13
shows how AMS fits in the transition to SOC. In synthesis-based timing-driven
design (TDD), AMS does not play a role. In systems using TDD, analog func-
tionality was added by having separate IC solutions. AMS blocks enter into
block-based design (BBD), where blocks are integrated but require a lot of inter-
action between the block provider and block integrator. Finally, using AMS VCs
in PBD has the advantage of a clean separation between VC author and VC
integrator via a formal handoff.
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With a few exceptions, using AMS VCs in PBD is similar to using digital VCs.
One of the differences is that the VC database has to be extended to accommo-
date AMS VCs, and more information needs to be provided. Allowances need to
be given for the performance specifications and the additional information
required for using AMS VCs. In terms of the rapid-prototyping environment,
AMS VCs need to be packaged as separate VCs and integrated at the board level.
They cannot be mapped to field-programmable gate arrays (FPGA) as digital
VCs can.

In addition, AMS can be included in the hardware kernel, which enables
higher performance AMS blocks to be considered. Digital cores, which are typ-
ically non-differentiating for the AMS designer, provide additional functionality.
The design techniques tend to be more custom and, therefore, can afford higher
functionality. An example of this type of hardware kernel is a mid-performance
RF front end. The digital blocks provide the interface functions required for the
product, but the focus of the design is on the AMS portion.

In Summary

A key to success in using AMS in SOC is recognizing the design style required.
This helps to ensure that the appropriate investments and techniques can be
applied for the market in question. Using a methodology not suited for a design
results in cost overruns, time delays, and design problems. If we return to the
questions asked at the beginning of the chapter, we can propose the following
solutions and approaches.

(Continued on next page.)
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Software Design in SOCs

This chapter addresses the issues involved in software design and development for

embedded SOC designs. In terms of the platform-based design (PBD) methodology

introduced earlier, this chapter discusses the tasks and areas shaded in Figure 9.1.

9
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Embedded Software Development Today

To develop a new approach to embedded software design, we should first look
at what methodology is used today in order to examine its shortcomings. The
availability of packaged development environments, such as board support
packages (BSP), influences (or limits) which processor, real-time operating sys-
tem (RTOS), and development methodology is chosen. Usually, the target
RTOS tends to be well defined and often pre-chosen, possibly based on the
previous development project in this family of products.

BSPs contain a target processor or processor core (packaged out), memory
devices, a bus that is close to the target on-chip bus, slots for adding field pro-
grammable gate arrays (FPGA) that emulate hardware functions, and slots for
adding other hardware functions encapsulated into IC form. They can also con-
tain pre-packaged peripheral interfaces, and a connection to a debug and
download environment running on a host workstation, very often a PC.

The RTOS can be downloaded onto the BSP with a variety of predefined
configurations and configuration files. In fact, most commercial RTOSs have a
host of configurable parameters so that they can be more precisely tuned to
the specific application and to minimize latencies and memory consumption.
Cross-compilers, host-based software development environments (debuggers,
disassemblers, and so on), and host-based RTOS simulators enable code to be
quickly developed, compiled, and debugged. In this sense, the BSP is very anal-
ogous to the rapid-prototyping environments for SOC integration platforms.

Cost (royalties for the core and RTOS; fabrication cost of the core), perfor-
mance (of the processor and RTOS functions), and time to market (based on
availability of the appropriate BSP and host-based development environment;
reuse of existing software; and so on) affect which processor core, RTOS, and
BSP are selected. These decisions are driven by the overall product design goals
for function, performance, and development schedule. The product functions
are defined and mapped to hardware or software via function-architecture co-
design. Functions mapped to software are decomposed into components, which
can either be new components or, preferably, existing ones. Often in parallel
with this phase, existing reusable software virtual components (VC) from pre-
vious projects, a core vendor, or ones that can be purchased from third parties
are chosen. Performance, cost, and the software’s memory footprint are all
important considerations. Sometimes existing components and libraries are
chosen solely to avoid new development, even if they are more complex than
required, a little slower than ideal, or occupy more memory than is targeted
for the product application.

Existing reusable software VCs rarely cover all the product’s required appli-
cations, so functions must be newly created. For that reason, it is extremely
important to identify the software’s architecture—the layering and depen-
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dencies of functions, and their interfaces—and to try to stabilize and freeze
the interfaces as soon as possible to provide a stable base for new functions to
be developed. These are then developed on the host, debugged (together with
reused software functions), cross-compiled to the target processor, downloaded
to the BSP, and integrated with other software VC components. The whole
system is then available for prototyping, debugging, and optimization. The
RTOS must be tuned to the application (for example, choosing stack sizes,
detailed scheduling parameters, number of tasks if this is fixed by the applica-
tion software, time slices, and any other configurable parameters) to minimize
latency and memory consumption. Any specific device drivers for the
intended SOC device must be written, optimized, integrated, and debugged
in the system context.

In parallel with developing the new code and integrating it, the system test-
bench must be developed. The testbench can be used on the host-level debug
and on the BSP during software integration and debug. It will also be used
later with the manufactured SOC devices during final system integration on
the real hardware.

During this process, if the system fails to meet performance requirements
on the BSP, or exceeds planned integrated memory capacity on the SOC
device, a well-defined procedure on how to correct the situation does not exist.
Rewriting the performance-critical pieces of code to optimize the C or other
high-level language code to minimize processor cycles and memory con-
sumption is usually the first approach. Failing this, rewriting code in assembly
level, or at least those parts of the code that consume the most processor cycles
should be tried. If, as in many real-time embedded software applications based
on digital signal processors (DSP), the code is already based on hand-coded
assembly-level algorithms, there might be a fundamental mismatch between
the DSP and the application requirements.

To identify the performance and memory-critical areas of the code, various
kinds of performance-analysis capabilities need to exist in the software devel-
opment environment, such as cycle-counting processor simulations (achieved
by using an instruction set simulator (ISS) that is at least cycle-approximate);
memory mapping and layout analysis tools; various kinds of breakpoints, flags,
and triggers in the debugger; cross-probing of source code vs. object code; code
profilers at the procedure, statement, and instruction level; and visualization
tools for making sense of all the possible information that can be extracted.

The Architecture of Embedded Software
Typically, the architecture of embedded software is layered, as shown in
Figure 9.2. Device drivers, which provide the basic hardware/software inter-
faces to specialized peripherals lying outside the processor, are closest to the
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hardware layer. Above that is the RTOS layer. It contains the RTOS kernel,
which offers basic services such as task scheduling and intertask messaging. This
layer also contains the communications stack protocol, which further layers
communications between the application layer and the hardware layer, event
and alarm trapping and management to handle hardware interrupts, and exter-
nal IO stream management for files other data sources, displays, keyboards, and
other devices. Higher-level system functions are made available to user appli-
cations and system diagnostics via Application Program Interfaces (API). The
diagnostics and applications layer provide the highest level of control over the
embedded software tasks, user interfaces, system state, initialization, and error
recovery.

Diagnostic software is often overlooked when considering the embedded
software area. This includes the software required to bring up and initialize
the hardware, to set up the software task priorities and initial software state, to
start the key applications running, and to provide run-time error monitoring,
trapping, diagnostic, and repair without upsetting the purpose of the product
application.
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Issues Confronting Embedded Software Development

The current embedded software methodology is limiting and impedes moving
to a platform-based approach for SOC design. It does not promote the reuse
and efficient porting of software VCs.

Other major issues and concerns regarding embedding software into SOC
designs are as follows:

What is preventing the emergence of an embedded software industry?
What are the trends in real-time operating system (RTOS) development?
How is software ported to a new processor and RTOS?
How do I simplify generating device drivers?
What is the current hardware /software co-design and co-verification
practice?
How do I handle verification?

Creating a Software VC Industry
The need for a software VC industry is emerging. All the same factors that con-
tribute to the rise of SOC design (product complexity, sophisticated applica-
tions, multidomain applications, increasing time-to-market pressures) apply to
the software domain. Software, however, has certain characteristics that make
the VC concept difficult to apply as rapidly as desired.1

One problem is clear: the rapid proliferation of various hardware platforms
in all kinds of embedded application products means that software must be
ported to numerous hardware targets. No single processor or architecture dom-
inates, and growth in specific hardware platforms that incorporate processor
cores from a host of semiconductor companies means that the number of tar-
get platforms continues to proliferate. Since the cost, size, battery life, and other
key product factors for embedded portable devices and wired appliances con-
tinue to seek differentiation and optimization, the pressures to develop new
platforms from a large number of manufacturers continues. Any platform stan-
dardization is likely to be deferred and, in fact, might not emerge at all given the
continued development of new and varied applications.

Yet all platforms want access to significant amounts of application software
content and middleware APIs in order to have rapid product development

1. This discussion draws on a presentation made by Sayan Chakraborty,Vice President and General Manager

of Development Tools, Cygnus Solutions, entitled “The Riddle of Software IP,” made to the VSIA System

Level Design Development Working Group (SLD DWG) on March 27, 1998. It relies on general information

presented on the software industry only, not on any Cygnus-specific information.
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cycles. Hardware differentiation and the desire for standard software develop-
ment platforms are in opposition. One possible solution is a more rigid archi-
tectural approach of dividing the software layers into hardware-dependent and
hardware-independent layers. The hardware-dependent layer, which contains
hardware and processor and RTOS dependencies, has a well-defined set of inter-
faces to the layers above it. The hardware-independent layer avoids any specific
hardware, processor, and RTOS dependencies and also has well-defined inter-
faces to layers below and above it. Theoretically, only the hardware-dependent
layer requires specific porting to a new hardware platform, and if it is minimized,
the effort is less.

Trends in RTOS Development
There are two opposing trends in the evolution of RTOSs. One is the attempt
by Microsoft to widen the range of applicability of its Windows CE™ operat-
ing system beyond the current applications in portable digital assistants (PDA)
to a wider variety of applications that demand “harder” real-time performance.2

Microsoft is also aiming to apply Windows CE to such areas as embedded auto-
motive use, not in the hard-core engine control and safety-critical areas but in
the higher levels of the automotive electronic environment, such as navigation
aids and entertainment and mobile office applications.3

Microsoft has the financial and technical resources to move Windows CE to
a variety of embedded application areas. However, its suitability for hard real-
time applications, which also need a very small memory footprint for the
RTOS, is open to question. Windows CE is relatively large in extent and con-
tains layers that are suitable for some of the key applications in PDAs and
portable entertainment and office appliances (such as the Win32 API), but are
overkill in such things as cellular handsets and lower-end embedded appliances.
It remains to be seen how future developments in Windows CE will move the
market as a whole.

Having Windows CE as a de facto industry standard is a big advantage for
application software developers, since porting requirements are greatly reduced,
and a large support infrastructure would emerge, such as APIs, other software
VCs, and more standardized development systems.

The opposing tendency is for RTOSs to aim for ever-smaller footprints
and for significant application specificity to be incorporated. Commercial
RTOSs have supported microkernel configuration for a long time, although

2. Tom Wong, “The Rise of Windows CE,” Portable Design, September 1997, pp. 57-58; and Alexander

Wolfe, “Windows CE Has a ‘Hard’ Road Ahead,” Electronic Engineering Times, April 13, 1998,

www.techweb.com/ se/directlink.cgi?EET19980413S00.

3. Terry Costlow,“In-Vehicle PCs Face Bumpy Road Ahead,” Electronic Engineering Times, March 2, 1998,

www.techweb.com/wire/story/TWB19980302S0017.
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the degree of parameterization and the ability to include or exclude spe-
cific components and features has been relatively coarse. New entrants into
the market offer new approaches and claim a much finer-grained approach
to creating RTOSs for very specific applications. For instance, Integrated
Chipware is a new startup that offers a hierarchical, extensible set of fine-
grained component libraries, which can be customized and combined to
generate an optimized kernel RTOS. They also claim to have carefully
layered the processor-specific portions of the RTOS to minimize the
porting effort to a new processor and to layer away the processor-specific
dependencies.4

Other companies are providing combinations of RTOS and application-
specific modules tailored to specific markets. FlashPoint Technology announced
a reference design for a wide range of digital cameras based on the WindRiver
VxWorks RTOS and specific software modules created by FlashPoint.5 This
was combined with a reference design, creating an integration platform tar-
geted to digital cameras. Some of the customizations involved in this approach
include the choice of specific peripheral interfaces. By pre-tailoring specific
interfaces in the RTOS and reference design, the company hopes its platform
will appeal to a wide variety of end-product customers. In this sense, the plat-
form and the RTOS are inseparably bound together.

Generating a new, application-specific RTOS for an application raises as
many questions as it answers. Since the RTOS implementation is new, it is
unverified in practical experience and would require extensive validation by
software writers and system integrators to achieve the same level of confi-
dence as a well-known commercial RTOS. This argument also holds for
switching to a new, commercial, application-specific RTOS that is unfamiliar
to a design team. Similarly, either a newly generated RTOS for a specific appli-
cation or a commercial one targeted to an application space would be quite
unfamiliar to many software writers, and the learning curve to use it effec-
tively could be rather steep. In this case, a commercial RTOS would be advan-
tageous, because it has been validated by its creators as well as through
substantial commercial use, and also because many software teams are already
familiar with it.

Porting Software to a New Processor and RTOS
When porting application software or middleware to a new processor and
RTOS, an integration platform could meet the needs of specific derivative

4. Terry Costlow, “Startup Lets Developers Custom-design RTOSes,” Electronic Engineering Times, March

30, 1998, p. 10.

5. Yoshiko Hara and Terry Costlow,“Digital-Camera OS Develops,” Electronic Engineering Times, April 20,

1998, p. 14.
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designs, without requiring significantly more development and porting effort
and time, as well as avoiding the added risk of software reimplementation and
validation. Another way to reduce porting costs is to abstract common mech-
anisms, such as tasking and intertask messaging, from specific RTOSs and use
this common layer instead of directly using each RTOS’s functions. Figure 9.3
illustrates the situation today.

A more appropriate approach would be to have a common RTOS abstrac-
tion layer, as shown in Figure 9.4. In this approach, a standard RTOS target
API is defined, and the application software has an RTOS-independent layer
and an RTOS-aware layer. Because there might be high performance RTOS
functions provided under specific RTOSs, a layer of exceptions, which needs to
be dealt with manually, should be included. Such high-performance exceptions
could contain very application-specific services, which would justify the extra
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porting effort of optimizing the application. However, if a particular software
application does not need to deal with such exceptions, the job of porting soft-
ware to a new RTOS is minimized, requiring merely a relinking to a new API
layer that interfaces with the RTOS.

It can be argued that POSIX was an attempt to define a standard RTOS set
of functions and services that would allow greater portability of real-time soft-
ware, and that the POSIX effort failed because it was too basic and offered
inadequate performance in comparison to what could be achieved using the
special features of commercial RTOSs. In addition, POSIX was criticized for
being too arcane and inefficient for real-time embedded systems, since it is
based on UNIX.6 However, ideas that were not viable on a previous generation
of technology can often work for the next generation. The evolution of
embedded systems may well demand moving to an RTOS standard in the
future, at least for certain families or classes of applications.

Simplifying Device Driver Generation
Another area where significant improvements for embedded software are pos-
sible is in automated device driver generation, as illustrated in Figure 9.5.
This concept, which utilizes the standard Virtual Socket Interface (VSI)
Alliance’s interface or socket definitions, develops a specification for the
interface between the RTOS and a hardware VC function (the device).
Development of third-party commercial tools should allow this to be realized
over time.

Some commercial tools are now supporting the automated generation of
device drivers. For example, Aisys, which is marketing a tool called Driveway
3DE that automates the design of device drivers through tool assistance and
templates, claims that their toolset reduces driver development cost by 50

6. Jerry Epplin,“Linux as an Embedded Operating System,” Embedded Systems Programming, October 1997,

www.embedded.com/97/fe39710.htm.



216 Surviving the SOC Revolution

percent and time by 70 percent.7 The tool supports driver development using
the following methods:

Online microcontroller datasheets and interactive help to assist in defining
the driver
Chip browsing tool to identify the peripheral for which the driver is to be
generated
Driver API definition window to define the driver’s function and options
Peripheral configurator to choose specific peripheral options
Code generation to create the driver code

The automation of these functions will become even simpler as the VC inter-
face standard becomes well defined.

Hardware/Software Co-Design

Current embedded software design involves hardware/software co-design, co-
verification, and co-simulation. Co-design starts with functional exploration,
goes through architectural mapping, hardware/software partitioning, and hard-
ware and software implementation, and concludes with system integration.

The hardware/software co-design phase divides the system into a set of hard-
ware and software components for which specifications are generated and
passed to detailed implementation phases of design.

The activities that occur during the implementation of hardware and soft-
ware components are referred to as hardware/software co-verification. This
includes the verification activities occurring during system integration.

Traditionally, hardware and software implementation processes have often
diverged after being based on (hopefully) originally synchronized and com-
patible specifications from the system design and partitioning stages. To some
extent, hardware/software co-verification activities can be regarded as specific
attempts to bring these diverging implementation activities back together to
validate that the detailed hardware and software designs are still consistent and
meet overall system objectives.

Most hardware/software co-verification in system design occurs when the
first prototype system integration build occurs, at which point an often lengthy
run-debug-modify-run-debug-modify cycle of activity begins.

7. Simon Napper, “Tools Are Needed to Shorten the Hardware/Software Integration Process,” Electronic

Engineering Times Embedded Systems Special Report, 1997, available from the Aisys Web site at www.aisys.co.il/

news/eetimes.html; and Simon Napper, “Automating Design and Implementation of Device Drivers for
Microcontrollers,” 1998, available from the Aisys Web site www.aisysinc.com/Community/Aisyp/aisyp.htm.
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Co-simulation technologies vary tremendously in their speed and ability to
deal with large testbenches, especially system-level tests. Table 9.1 indicates the
relative effectiveness of various co-simulation techniques.8

Notwithstanding the range of performance shown in the table, the attempt
to integrate views of the hardware and software implementations and to use
either commercial or ad hoc methods of hardware/software co-simulation to
validate that the system will eventually integrate correctly is doomed to failure
unless considerable attention is paid to what needs to be verified at each phase
of design and implementation and at what level of abstraction should the ver-
ification occur.

Orthogonal Levels of Verification
To address the issue of verification in hardware/software co-design, an orthog-
onal method can be adopted. The concept of “orthogonalizing concerns” and

8. J. Rowson, “Hardware/Software Co-Simulation,” Proceedings of the Design Automation Conference, 1994,

pp. 439-440.
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abstracting the questions asked in verifying a design has been discussed in other
sources.9 Essentially, the concept is based on the following:

Identifying the design’s separable levels of abstraction
Ensuring that appropriate models exist for design components at each level
of abstraction
Identifying the verification questions that can be answered at each
abstraction level
Creating suitable testbenches at each level
Validating the design at each level, and passing the appropriate testbenches
from higher abstraction levels to lower

For most systems, the levels of abstraction shown in Figure 9.6 can be identified.
Of the concepts presented above, solving the verification levels, model

access, and technology issues can be done by using some of the emerging com-
mercial or ad hoc hardware/software co-simulation tools. The most challeng-
ing issues are identifying what should be validated at each level, constructing
the detailed testbench for that level of design, and generating subsidiary or
derived testbenches that can be passed from one level to the next. Given the
fact that each level of abstraction is between 10 and 1000 times faster in simu-
lation efficiency than the next level down, albeit with a corresponding reduc-
tion in fine-grained simulation detail, it behooves the design team to answer
each verification question at the highest possible level of abstraction that can
reliably furnish an appropriate answer.

For example, when a cellular phone call in a moving vehicle is handed off
from one cell to the next, moving from one base station’s control to the next, a

9. Alberto L. Sangiovanni-Vincentelli, Patrick C. McGeer, and Alexander Saldanha, “Verification of

Electronic Systems,” Proceedings of the Design Automation Conference, 1996, pp. 106-111; J. Rowson and A.

Sangiovanni-Vincentelli, “Interface-based design,” Proceedings of the 34th Design Automation Conference, 1997,

pp. 178-183; and C. Ussery and S. Curry, “Verification of large systems in silicon,” CHDL 1997, Toledo, Spain,

April 1997.
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number of interesting control events occur while speech is being processed to
ensure smooth handoff. High-level system design tools for dataflow systems can
be used to verify the correct handling of speech in the baseband algorithmic pro-
cessing layer, and the correct interactions between baseband and protocol layers
during the control processing. A blind mapping of this testbench from the algo-
rithmic level of abstraction to a register-transfer level (RTL) and C-level of
abstraction, using commercial hardware/software co-simulation techniques,
results in a testbench that runs for an impracticably enormous number of clock
cycles, since the level of abstraction is much lower. The most interesting fact about
such a testbench is that a huge part of it, and a very large part of the resulting
simulation time, is validating the same thing over and over: the correct handling
of speech by the hardware/software combination involved in baseband process-
ing. Only a very small part of the simulation is dealing with the control events
that occur and the interactions between protocol and baseband processing.

It is therefore important to subset or segment higher-level system testbenches
into slices that deal only with the most important verification questions at the
lower level, such as hardware/software interactions and control processes that deal
directly with the handoff, and task scheduling and interrupt handling of baseband
processing on the DSP in the handset, rather than the mundane and well-proven
baseband processing algorithms. This concept is illustrated in Figure 9.7.
Methodologies and tools to allow accurate and complete testbench segmentation
for lower-level verification are currently at a very primitive state of development,
and robust techniques that solve this problem will likely take some time to develop.
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Improving Embedded Software
Development Methodology
To improve the current development methodology for embedded software so
that development time of derivative products can be shortened and risk
reduced, the following methods need to be adopted:

The hardware/software definition, trade-offs, partitioning, and modeling
are done at the system level.
The software architecture is an integral part of the application-oriented
integration platform.
The software architecture is carefully layered to minimize porting to new
processors and RTOSs.
Application-specific RTOSs are defined as part of the platform, when
appropriate.
Software is structured to maximize reusing software VCs.
Further develop standards, such as the VC Interface, to help automate
device driver development.

If we return to the questions asked earlier in the chapter, we can propose the
following solutions and approaches.



Software Design in SOCs 221



This page intentionally left blank



In Conclusion

This book has explored the challenges and benefits of transitioning to SOC design,
and the methodology changes required to meet them. These methodology
changes include function-architecture co-design, bus-based communications
architectures, integration platforms, analog/mixed signal (AMS) integration, and
embedded software development. Each of these methodologies fits into and lever-
ages platform-based design, which we believe is the only method that is going to
meet the design productivity challenge. But it is when all these approaches are
brought together that platform-based IC design is the most productive.

Economics—the Motivator

The primary driver for the methodology shifts we have been discussing is the
same as what motivates most business changes—economics. However, the eco-
nomics that are driving the SOC transition are unique in terms of how sig-
nificant the shifts are and how quickly they are happening. The economics of
the semiconductor industry, which are now taken as law, are that each succes-
sive generation of IC technology enables the creation of products that are sig-
nificantly faster, consume much less power, and offer more capabilities in a
smaller form factor, all at a greatly reduced system cost. These changes drive,
as well as are driven by, the growing consumer desire for electronics-fortified
products. The combination of a new generation of IC technology occurring
every 18 months (and accelerating) and the continuing growth of worldwide
consumer markets has become a considerable, if not the largest, economic lever
in the world.

Effectively leveraging the capabilities of the semiconductor process tech-
nology into short-lived, rapidly evolving consumer products is a high-stakes
game with big win or big loss potential. We have seen industry leaders in one
product generation be completely overwhelmed by the next generation. For
example, in the case of modems, Hayes was replaced by Rockwell, who was
replaced by Texas Instruments and Lucent. The winners in this race were able

10
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to respond to the market demands by capitalizing on the latest generation of
process technology and creating a product that was differentiated by new fea-
tures. While the ability to see the emerging market and to have the vision of
how to realize it using new process technology lies at the heart of most suc-
cessful companies, by not adopting a strong design methodology, a company
could still fail at producing a timely product.

Platform-Based Design—the Enabler

Platform-based design is an essential element in producing comprehensive
SOC designs. As discussed in Chapter 3, different levels of platforms address
the trade-offs between flexibility and productivity. The expectation is that as the
IC industry pursues the process technology evolution, companies will follow
this methodology evolution. However, different application markets will fol-
low the evolution at different rates, based upon their particular evaluation of
economic factors and their ability to assimilate the methodology changes.

Platform levels 2 and above have the potential to fulfill the Virtual Socket
Interface Alliance’s goal of plug and play SOC design. The plug and play goal
establishes that all the connections between the block and the integration plat-
form are completely specified (the plug), as well as the operational behavior, the
data, and the instruction streams (the play).Thus, the integration effort for SOC
design can be essentially reduced to only the physical design merge and layout
verification. This level of design productivity provides an answer to the “design
productivity gap” between cost-effectively designing systems on-chip and man-
ufacturing them. SOC design productivity would then become more analogous
to printed circuit board (PCB) design, where the design and verification focus
is primarily on the interactions between components on the board, and not on
the design and verification of the components themselves. This move upward in
the abstraction level for IC design is fundamentally enabled by the platform.

Platform-based design also provides the opportunity to better leverage emerg-
ing design technologies and methodologies. As we have discussed throughout
this book, the move to platform-based design results in productivity gains through
partitioning of the design problem to better support function-architecture co-
design, separation of core functions and interface design, the effective integra-
tion of analog circuits into digital SOCs, and a modular embedded software
architecture that parallels the hardware architecture. These combined benefits
yield a solution path that is sure to evolve beyond what we have outlined.

SOC—Changing How We Do Things

In this book, we have attempted to cover the broad spectrum of SOC design.
However, practicalities and conceptual maturity dictated that some topics were
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not fully explored. We would like to mention some areas that merit more atten-
tion as SOC methodology develops.

For instance, an entire book could be devoted to the manufacturing test issue.
The methods for testing systems and component chips are traditionally quite dif-
ferent. When systems are implemented on boards, testing is amenable to a natu-
rally hierarchical approach: test the components using a variety of techniques,
mostly scan- or BIST-based; test the components in-circuit on the board after
assembly; if a component is bad, remove and replace it; if the board is bad, repair
it. Tests for the board are largely connectivity-based, followed by running the sys-
tem itself. This process does not translate well to SOC applications. As systems are
implemented on SOCs, a serious crisis in the testing approach occurs.

The method outlined in Chapter 7 is characteristic of approaches taken.
However, the time required for a manufacturing tester to perform detailed
stuck-at-fault, embedded memory, at-speed performance, and AMS tests for
potentially hundreds of blocks is excessive by today’s IC standards. SOC designs
will require new trade-offs in the areas of coverage, failure isolation, cost, and reli-
ability. The use of platform-based design to create solutions to these trade-offs
will emerge and mature. Using on-chip processors to perform the tests will evolve
over time to a unique test architecture potentially populated with dedicated
processors, reconfigurable design elements, redundancy options, and additional
interconnect overhead to ensure system economics and constraints are satisfied in
manufacturing. However, even assuming significant advances in tester technology,
the final solution will require a recognition and acceptance that the economics of
testing SOC designs needs to be adjusted to reflect the intellectual content of
the device under test and the reliability requirements of the end user.

Microelectronic mechanical systems (MEMS) will also demand a significant
rethinking in regards to SOC design. The foundation established for predeter-
mining at the platform-design level the relationship between analog and digi-
tal logic, which extends down to the substrate design level, can serve as a
starting point.

Another area to be examined is chip package-board design. As systems are put
on chips, the packaging and board interface issues associated with high-speed,
real-world interfaces will demand that custom package design become the norm
rather than the exception. Issues, such as simultaneous switching, heat, multi-
power design, noise, and interfaces to off-chip buses, will need to be analyzed at
a level consistent to what is being done at high-performance system houses today.

A Change in Roles
All these topics, as well as extensions to the embedded software reuse model,
the utilization of reconfigurable hardware, and the emergence of a viable intra-
company VC business model, are subjects for future exploration. However, the
real challenge of the future lies in our ability to adapt to what is the most
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rapidly expanding set of technology-driven opportunities in the past two
decades.

The transition to SOC is realigning the entire industry and affecting who is
contributing to IC design. This significant change, which is taking many years
to roll out, is contributing to an overall deverticalization of the IC industry. A
single company is no longer exclusively handling the design for a specific IC,
instead many companies are contributing based upon their specific areas of
expertise. This leads to a group of companies linked together to provide the
complete IC design solution. This type of change is causing companies to re-
engineer themselves and determine where their core competencies are—and
where they aren’t.

No longer do design engineers have neatly demarcated descriptions sepa-
rating architects from logic designers from IC designers from software design-
ers. The skill sets required to design a product or author a reusable VC demand
a breadth that harkens back to the “tall, thin designer” analogies of the early
80s. The opportunities for the individual engineer to expand his or her hori-
zons, to move beyond the bounded roles defined in the ASIC model, are
greater now than ever before. But it will require an unprecedented cooperation
among teams, across groups, within and across industries.

This reorganization, investment, and divestment, added to a methodology
change, presents new challenges and opportunities. Those companies who
move the fastest and see the new opportunities can seize them, and perhaps
displace the market leaders who are clinging to the previous methodology and
industry roles.

The Golden Age of Electronics

With a cost-effective means of designing, verifying, and building complex
SOCs, labeling this generation the Golden Age of Electronics will be hard to
dispute. The semiconductor industry will affect every electronic device as well
as many non-electronic devices that can benefit by adding some form of elec-
tronic intelligence or interconnection. Imagine a $20 add-on to an existing
“dumb” device that can anticipate its own and your needs and respond to them
automatically, learn usage profiles, use resources more efficiently, be safer, and
connect with the Internet and other devices. This add-on is well within the
range of the SOC designs that we have been discussing in this book. An
embedded microcontroller, sensor inputs and actuator outputs (analog to dig-
ital, digital to analog), network interfaces (wireless, wireline), and some embed-
ded software provide the necessary functionality. The single-chip
implementation offers the cost point that creates the economic impetus to
deliver these add-ons.
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Previously, either the functionality or the cost (or both) was out of reach for
most products. With the latest process technologies and efficient SOC design
(platform-based), many applications instantly become possible. Adding elec-
tronics intelligence to non-typical electronics devices (electronics infusion) can
bring new life to stagnant products.

The impact of SOC goes beyond the microwave oven that automatically
scans the bar code on the food package and then looks on the Web for the
appropriate cooking time, which is scaled to the power of the oven, ambient
temperature, and estimated cooking completion time of the rest of the meal
on the “smart” stove. SOC also provides the low cost, low power, high perfor-
mance, small form factor devices that will fulfill the prophesy of the disaggre-
gated computer and ubiquitous computing. The combination of these two
major changes, electronics infusion and ubiquitous computing, leads to a world
of intelligent, interconnected everything. The efficient application of SOC
technology through platform-based design could lead to continued and lasting
productivity gains across the economy. Then, we electronics designers can truly
say we changed the world!
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